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ABSTRACT

Transfers between coplanar coaxial ellipses in a strong inverse
square gravitational field are investigated. The control acceleration
is provided by a combination of ideal velocity limited and ideal power
limited rockets. Since the acceleration of the power limited rocket
is assumed to be much' smaller than gravity, that phase of the transfer
is a slow spiral over many orbits. The velocity limited rocket is
assumed capable of impulsive thrust. The combination of impulsive
with continuous control accelerations introduces complexities in the
optimal control problem which are not present in the independent study
of either one. A general cost function for ideal engines and necessary
conditions for transfers in an arbitrary gravitational field are
derived in a form for application to orbital transfers. The solutions
for field free space transfers are given. The necessary conditions
for optimal transfers between coplanar coaxial elliptic orbits are
derived and then solved on a digital computer. The number and timing
of impulses are numerically determined. A substantial improvement in
payload is obtained by the optimum combination of propulsion systems,
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Chapter 1

INTRODUCTION

As the scientific goals for earth orbital and planetary missions
are becoming more ambitious, there is the continued desire for higher
payload through better use of available propulsion systems. Low thrust
rockets with a higher specific impulse (pounds of thrust per pound of
fuel per second) have been tested and will soon be available for
operational use. High thrust chemical rockets with a lower specific
impulse have been used exclusively for all space missions carried out
to date and are necessary for initial insertion into orbit for any
mission. Although transfers using either pure high or pure low thrust
have been studied extensively in the past, the combination has re-
ceived little attention. The possibility of improved efficiency using
the combination of both types of rockets is an important area to be
explored., Payload improvements are obtained for a class of orbital
transfers using the combination of ideal velocity limited (high thrust)

and ideal power limited (low thrust) rockets.

The two types of engines considered are limited by their basic
operating characteristics. For velocity limited rockets, the pro-
pellant is the product of a combustion which also provides the pro-
pulsive energy. The exhaust velocity of the propellant and thus the
specific impulse of the engine is limited by the attainable chamber
temperatures and the molecular weight of the propellant. However,
the power available is proportional to the fuel flow rate and thus the
possible thrust level is very large. In the payload optimization using
such an engine, an impulse is theoretically optimal, and with respect
to orbital transfer times, can be achieved. Only the efficiency of
the engine (specific impulse) and not the thrust level is limited by

the exhaust velocity.




Ion engines are limited by the propulsive power available. An
independent electrical power supply is used to generate a field which
accelerates the ionized propellant. For any mission, the power
available is assumed proportional to the power supply mass which is
fixed and independent of the propellant. This mass, which is not
normally considered as part of the payload, must be optimally chosen
to provide enough power with the minimum extra mass. With limited
power, a high exhaust velocity is possible only for low acceleration
levels. Optimal pure low thrust transfers have a continuous, but not
necessarily constant, thrusting at the lowest acceleration level which
will accomplish the transfer in the specified time of flight. The
low thrust payload increases with longer times of flight since the
necessary acceleration can be lower. The advantage of the high
specific impulse which is provided by a power limited engine is ob-
tained at the expense of longer times of flight and a separate power
supply.

The combination of rockets has the promise of an improvement in
payload over either type used independently. If a long time of flight
is possible, the use of low thrust can certainly improve the payload
over pure high thrust. But even when low thrust can be used effec-
tively, a high thrust rocket is required for initial insertion into
orbit and can improve the payload by its use at opportune times during
a transfer when the low thrust rocket has too low an efficiency due
to the high acceleration required. Missions which require a power
supply in the final orbit for communications or experimental purposes
provide further motivation for the consideration of the combination.

The mass of this power supply, m is dead weight for high thrust

e’
transfers, but can be used to good advantage for a low thrust phase.

If the optimum power plant mass is larger than Mg the undesired
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portion will be dropped at the final time. Otherwise, use of m, as

the power plant mass maximizes the payload. For non-zero m, or for a
long time of flight, the combination of high and low thrust always has
a higher payload than pure high thrust. If the time of flight is very
long, the high thrust will only be used for initial insertion into or-

bit and low thrust will complete the transfer.

Optimal mixed thrust transfers between coplanar coaxial elliptic
orbits in a central inverse square gravitational field are studied.
Within the assumptions used here, the pure high and pure low thrust
transfers have complete closed form analytic solutions. For the com-
bination of the propulsion systems, the dynamic optimization problem
is analytically reduced to the maximization of a payload expression
over several free parameters. These maxima are numerically found for

a large variety of specific transfers in this general class.

1.1 The assumptions used

Since some assumptions are necessary to obtain the pure high and
pure low thrust analytic solutions, similar assumptions are required
for the analysis of the more complicated combination of propulsion
modes. The ideal engine assumptions allow an explicit integration
of the mass flow differential equation for the combination of engines.
The resultant payload expression is then maximized for particular
transfers. An assumption on the magnitude of the low thrust accelera-
tion in comparison to the gravitational acceleration has many rami-
fications which specialize the nature of the orbital transfers being
considered. As a result of all of these assumptions, the complicated
dynamic optimization problem for orbital transfers is reduced to the

maximization of a payload expression over a few constant parameters.
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The three masses considered in this ideal engine formulation are the
the fuel, power supply, and payload. For real engines, there would
also be the masses of the engines themselves, the fuel tanks, and
structures. In addition, there are specific assumptions made about
the operational capabilities of each class of engines. The high thrust
is assumed capable of producing an impulsive thrust. The low thrust
is assumed capable of operating at a variable exhaust velocity. Al-
though all of these assumptions are only valid for preliminary mission
studies, their use is justified because of the resultant analytic
simplifications and their relationship to the fundamental characteris-

tics of real engines.

Spacecraft propelled by pure high thrust engines are assumed to
have only the masses of the fuel and the payload. The efficiency of the
engine is completely determined by the propellant exhaust velocity
which is limited by the attainable chamber temperatures and the
molecular weight of the propellant. The propellant is the product
of the combustion which provides the propulsive energy. With this
assumption, the mass flow differential equation can be easily inte-
grated to give the fuel required for any specific maneuver. Since the
high thrust levels possible in real engines are applied for a small
fraction of the period of the orbits being considered, impulsive thrusts

are analytically allowed without loss of significant accuracy.

Spacecraft propelled by pure low thrust engines are assumed to
have the masses of the propellant, power supply, and payload. The capa-
bilities of these engines are determined by the mass and power capacity
of the power supply. The propulsive power is separate from the pro-
pellant and fixed for a particular mission. The size of the power
supply can be optimally chosen and a portion (or all) of it dropped at
the final time if solar cell panels provide the power. These assump-

tions allow an analytic solution of the mass differential equation



and the explicit choice of the optimum power supply size. $Since no
constraints are assumed on the allowable propellant exhaust velocity,
it will be variable, depending on the desired acceleration. Although -
a variable exhaust velocity will probably not be feasible in a real
engine, the resultant optimal control problem formulation is simpler.
The optimal payload and trajectory provide a good initial condition
for a numerical iteration on the more complicated problem for real

engines.

Orbital transfers in a strong, central, inverse squared gravita-
tional field are considered. The low thrust acceleration is assumed
to be much smaller than the acceleration of gravity. Typical low

thrust accelerations (10"4

g's) will be less than one percent of the
earth's gravity out to orbital distances of ten earth radii. Thus,

by assumption, only variations in radii of a ratio of ten will be
considered., With this restriction, optimal high thrust transfers have
two impulses at the opposite apses of a coasting orbit. For a low
thrust phase, there will only be a small change in the orbit during
any one orbital period. For significant transfers to be possible, the
result will be a slow spiral over a long time of flight and only the
secular variation in orbital elements are of significance. Since the
time of half an orbital period is assumed to be a small fraction of the
total flight time, any high thrust transfer will be considered as
having an open time of flight. For the mixed thrust problem, two
impulses applied at the opposite apses of an orbit can be assumed to
occur at the same time, with respect to the low thrust phase. Also

the effect of the low thrust during this half orbit can be neglected.

1.2 History of the problem

Two distinct classes of propulsion systems are considered for

orbital transfers. In the past, independent investigations of each
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class have determined their relative capabilities. The general
theories for tramnsfers, analytic solutions, and results for specific
missions have been developed. Edelbaum® surveyed the results and
compared the nature of some specific optimal transfers using each of
the two modes. If the change in radius is less than a factor of
11.94, the Hohmann!l transfer between coplanar circular orbits using
high thrust engines was shown to be optimal by Hoelker and Silber.10
The transfer has two impulses at the opposite apses of an elliptic
coasting orbit. By assumption, only changes in radius of less than

12

a factor of ten are being considered. Lawden summarized these

results and extended them to transfers between coplanar coaxial

ellipses. Edelbaum?™>

presented analytic solutions for a variety
of low thrust transfers. For coplanar coaxial transfers, he inte-
grated the equations of motion and also solved for the boundary
conditions on the costate variables. These results are expanded in

Appendix D.

1 , Fimple7 , Hazelrigg9 , and Grodzovsky8 considered the

Edelbaum
general optimal combination of propulsion modes and demonstrated their
feasibility. They restricted their analysis to elementary transfers
and did not investigate the general nature of such trajectories.

Other studies have considered the combination, but the mission
assumptions constrained the analysis and few theoretical principles
resulted. Grodzovsky8 presented a cost function for the combination
which did not consider retention of any or all of the power plant.
His results are expanded in Appendix B to include this possibility.

In the past, the combination of propulsion modes has not been considered

for any general class of transfers, except in field free space.
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1.3 The approach used

Before considering the problem of optimal orbital transfers, some
preliminary derivations are carried out. A payload expression is
derived and optimal transfers in general gravitational fields are
considered. The dynamics of the payload differential equations are
completely solved. The results are applied to the simple example of
transfers in field free space. Then the dynamics of an orbital trans-
fer problem in a central inverse square gravitational field are solved,
resulting in a payload expression which must be maximized over several
free parameters. The results of the numerical maximization are pre-

sented to complete the treatment of coplanar coaxial transfers.

Each chapter contains only those equations which are necessary
for the discussion of results. The required derivations appear in the
appendices. In general each chapter has an appendix which parallels,
but does not duplicate, the chapter. In the following discussion of

each chapter, the corresponding appendices are indicated.

In Chapter 2 (and Appendix B) a cost function is derived for ideal
engines from the basic principles of momentum and power. The resultant
complicated mass flow equations are simplified by the introduction
of some intermediate differential equations which are analytically
solvable. Using the new mass differential equations to define the
payload, the general optimization problem for transfers in an arbitrary
gravitational field is formed. Some of the resultant set of necessary
conditions are analytically solved to yield a simplified set of neces-
sary conditions for this general problem. Necessary conditions across
an impulse are also derived. A different problem simply representing
a convenient change of state variables is also given, along with its
solution. The form and characteristics of the final necessary con-

ditions are discussed.
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The problems of transfers in field free space are considered in
Chapter 3 (and Appendix C) in order to obtain as much insight as
possible into the basic characteristics of the problem. First the
general form of the solution is given and discussed and the specific
example of a change in velocity is considered. The optimum payload
for this problem can be obtained analytically for all cases except
one. A table of these optimum payloads in given along with plots
of the payload improvements. The results and characteristics of the

problem are discussed.

The analysis for transfers between coplanar coaxial ellipses is
presented in Chapter 4 (and Appendix D). The differential equations
of motion, with their boundary conditions, are completely solved within
the assumptions used here. The possible timing of impulses with res-
pect to the low thrust phase is assumed, since the timing during any
one orbit is known. For this assumed mode, expressions are derived
for the payload and the conditions which must be satisfied to maximize
the payload. Further conditions are presented which can be tested to

verify the validity of the assumptions on the timing of the impulses.

In Chapter 5 (and Appendices D and E) the numerical solutions of
the necessary conditions obtained in the previous chapter are discussed
for a large number of circle to circle transfers and some ellipse to
ellipse transfers. The equations employed do not have any special
properties for the set of transfers studied and should yield similar
results for all coplanar coaxial transfers. The numerical techniques
employed and the difficulties encountered are discussed. Plotted re-
sults are given both of the improvements in payload and of the orbital

paths followed in the transfers.

The results are summarized and recommendations for further research

are given in Chapter 6.
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Chapter 2
TRANSFERS IN AN ARBITRARY GRAVITATIONAL FIELD

An optimal control problem for the maximization of payload is
derived and presented for transfers in an arbitrary gravitational field.
After a partial solution of the complete problem, a simplified set of
necessary conditions for the controls is presented as a function of a
"primer vector'". The primer vector is identified for two different
forms of differential equations which might represent the vehicle's

motion in a position dependent gravitational field.

The ideal engine assumptions described in Chapter 1 are used to
derive fuel flow differential equations from basic physics. These
equations can be completely solved in terms of some integrals of the
control accelerations. The final mass, after all fuel has been burned
and any undesired power plant has been discarded, is defined as the
payload. A more convenient set of differential equations are then

derived which can be used to define the payload.

This expression for paylocad is used as the ''cost function'" to be
maximized for a general optimal control problem. The payload and
vehicle differential equations are adjoined together with appropriate
costate multipliers to form the Hamiltonian. Since the vehicle dynamics
do not directly enter the cost function, the problem can be logically
divided into two parts, the payload and vehicle dynamics. Due to this
separation, the payload costate differential equations are independent
of the state and only a function of the controls, A. These payload
costate differential equations with their boundary conditions can be
completely solved in terms of the control integrals which define the
payload. After eliminating these éostates, the resultant Hamiltonian is

only a function of the vehicle dynamics and the appropriate controls.

In payload optimizations for transfers which can be described by

i7




the two possible sets of vehicle dynamics presented here, the payload
differential equations must always be solved in the manner of this
chapter. For clarity of discussion of specific problems, all of the
payload equations are solved once in this chapter and the resultant
necessary conditions applied without reference to the total problem
which is implied by those conditions. The analytic steps involved for
this chapter are described in Appendix B. The results are presented

and discussed in this chapter.

2.1 The Payload for ideal engines

The fuel flow rate for any ideal engine is related to the thrust
provided, méi, and the propellant exhaust velocity, i by the

conservation of momentum
mec, = - mIAi| (2.1)

which assumes

Fuel can only be expended! For a given desired thrust, the fuel used
can be minimized by maximizing e The two classes of engines considered
here limit 5 by their basic operating characteristics. For any engine

the power required to accelerate the propellant is given by

Power = - > mc

In a chemical engine, the fuel provides both the propulsive energy and
the propellant. The attainable chamber temperatures and molecular

weight of the propellant limit <y explicitly. Ion engines are limited

18



by the propulsive power which the independent power supply can provide.

For chemical engines

and for ion engines

1 2
Il.'l= _ ’Z'(m A)
Power

Since the power plant size is fixed and independent of the engine for
ion propulsion systems, c; and m are related and cannot be independently
chosen. A high efficiency (ci) is obtainable only for a low fuel flow
rate, and thus low acceleration. In order to get this high efficiency,
the thrust must be at a low level, applied for a long time of flight,
The acceleration from chemical engines is limited only by the mass flow
rate. With respect to orbital transfer times, the thrust can be high
enough to be considered as impulsive. Thus the analysis is for the

combination of continuous with impulsive controllers.

Only two classes of engines are considered, but for analytic ease,
three engines are assumed. The first engine (Al) operates impulsively
with an exhaust velocity c¢. Although it can be used at any time during
the flight except the final time, it is optimal to use it only at the
initial time for most transfers. The second engine (52) operates
continuously during the entire mission. The power is assumed propor-

tional to the mass of the power supply, mp.

mp (2.2)

Qs

Power =

The size of mp remains to be chosen to optimize the payload. As

described in Chapter 1, it may be desirable to save a portion or all of
the power supply, and drop the rest at the final time. The third engine
(és)is used after any of the power supply is dropped. It has character-

istics identical to those of the first engine. The separation of

19




51 and 53 is for notational convenience and the reason will become

clear later in the derivation.
Appendix B combines all expressions for the various engines to
form a total mass flow differential equation. From these the mass at

the final time (the payload) is found to be

2 2 .
J1 [(Kl - Ll) + me] if mg < mp
m. = (2.3)
2 2
J X .
1 1 if m, > mp
1 2
1 += L
m, 1
where
m, = the desired final power plant mass
mp = Ll(Kl - Ll) = the optimum power plant mass (2.4)
[t
J, = exp[- 7cf0 }‘ASI dt] (2.5)
| f
K, = exp|- 7C./; léll dt (2.6)
te
2 o3 2 2
L% - 7/0 K2 (t) A,° (1) dt (2.7)

The notation 522 is used to denote ng A,, the square of the magnitude

of the vector acceleration. It is noted that J Kl’ and L, are the

1’ 1
final values of the solutions to the differential equations

20



[

L}

1
NI -
(2]

[
>

_ 1
K = -3 K}éll
2
- .6 K ,2
L= -7 ¢ A

with the initial conditions

J(0)

K(0) = 1.

L(0)

L}
[

such that L(t) > 0. The positive root of L(t) is always used. These
differential equations for J, K, and L are used in later sections to

define J K and Ly in the expressions for mo, which is to be

1’
maximized.

1!

Before proceeding to the complete optimization problem, it is
interesting to note the limits of pure high or pure low thrust. The
resultant cost function which could be used if only one class of
engines were used is presented. For pure low thrust we have the con-

ditions

A = 0 K(t)

i
fd

A, = 0 J(t)

]
ot

For pure high thrust, only the first engine needs to be used since it

is identical to the third. Thus

21




Ay = 0 J) = 1
N

Ay = 0 L(t) = 0

m, = mp = 0

for the pure high thrust.

The payloads for these limits follows easily. For the high thrust

Maximizing this expression for the payload is clearly equivalent to

minimizing the integral

te
./; |A] at = ] |av] (2.8)

which is a sum of velocity changes since it is used impulsively.

For the pure low thrust

, ,
(l-Ll) +omg m, < mp
m =
1
m_2m
14+ l le e P
Me
mp = L1 (1r - Ll)

Minimizing the integral

te
l~/" A2 at (2.9)
zJ, 2




is clearly equivalent to maximizing m., regardless of M.

Although payload maximization is the goal of most trajectory
optimizations, the problem is generally stated as a fuel minimization.
In the combination, however, due to the interplay of the two modes,
the problem must be explicitly stated as a payload maximization. We
can also anticipate greater difficulty in solving the problem due to
the interplay of the square root (for Ll) and the exponentials (in Iy

and Kl)‘

2.2 Necessary conditions for transfers in an arbitrary gravitational

The necessary conditions for the maximization of payload for
transfers in an arbitrary position dependent gravitational field are
derived in Appendix B. The general optimal problem is stated and the
results discussed in this section. Using the payload differential
equations of the previous section, the complete optimal control prob-
lem for transfers in a position dependent gravitational field is

given below. The payload as given by

2 2 .
J1 [(I(1 - Ll) + me] if mg < mp
m, =
3,2 k2 .
T 3 if m, 2 mp
1+ = L
m, 1

with
mp = Ll (Kl - Ll)

is to be maximized subject to the differential equation constraints

X = R+ Aj + Ap+ Aq (2.10)

23




= - 1
I |
2
. .o K 2
L= -7 1 4

with the boundary conditions on the differential equations given by

i
e

]

?ﬁ(to) Xy _SS(to)

X0
x(tg) = x¢ x(tg) = xg
Ity = 1 K(ty) = 1
L(t,) = 0"

The parameters Xgs Xg» go, gf, &, ¢, m_ and te completely specify the

e
desired transfer. The state vector, x, is the position vector of the

spacecraft for these differential equations. The accelerations A are

chosen to maximize the Hamiltonian

Ho= T (RGO + 4 + 4y +Ag) + 3T &

1 1 o K
- Ay ze JAgl - A g KIA L v A 70 A

where the costate, A (t), satisfies the differential equation

T
3R(x)
= 5% A (2.11)

>



The boundary conditions on ) are free since they are completely
specified for x. For this state differential equation, the costate,

A, is classically called the "primer vector" and has some properties
of interest. The primer, often identified as p (A here), and its first
two derivatives are continuous when any impulsive control is used,

since the differential equation for A is affected only by x (which

also is continuous across an impulse),

The optimal accelerations which maximize H are

Ay (8) = Q(e) A (8)

A = 8 ()
A=
0 if [A() < 8 (B)
©h (tg) if |A ()| = &4
,1‘:3 =
0 if A (to)] < 84
L
where ——7~l~————- '
Jl (K1 - Ll) if m, < mp
1
Q(t) =
uKZ(t) 5
m_+ Ll
© if m, >n
m, P
2 2 1 2 .
Jq (Kl—Ll) [ 1+ ﬁb L(t)}] if m, < mp
_ 1
§;(t) = % -
T 1 2 .
[1+ = L°(t)] ifm_ 2>m
1+ = 1.2 Mo e
m, 1
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If x is a vector of n state variables, A will also be a vector of n
variables. The 2 n differential equations in x and A have the 2 n
boundary conditions consisting of x, and x.. The low thrust acceler-

ation is explicitly related to A. Although the magnitude of the

impulsive controls él and 53 are not explicitly given, they are
constrained implicitly by the condition on the primer at the times of
the impulses. If the primer is less than the threshold, the impulse
explicitly has a zero magnitude. Thus the differential equations have
the correct number of boundary conditions and there is an equation
which implicitly specifies the magnitude of each impulse. Further, the
primer can never be greater than the appropriate threshold on an

optimal trajectory, or more impulses would be least locally optimal.

For the pure low thrust problem, if the integral of equation
(2.9) is minimized, the term equivalent to Q(t) = 1. The boundary
conditions on A are chosen so that A, is adequate to accomplish the
desired transfer. Pure low thrust is the optimal limit for the mixed
thrust problem when §, and §, are always larger than [x(t)|. The
scaling of the Q(t) is then incorporated in the initial conditions

on A.

For a pure high thrust transfer, if the integral of equation

(2.8) is minimized, the equivalent thresholds
Gl(t) =65 =1
and the boundary conditions on |A| are chosen such that

Al =1
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at the times of all impulses and is less than 1 for all other times.
Mixed thrust transfers become pure high thrust when the low thrust and
its cost, L1 go to zero (me must be zero or some low thrust will be
used). It is shown in Appendix B that this limit occurs at a disconti-
nuity in the equations for this formulation of the payload. Numerically
those difficulties can be avoided by specifying a small, but non-zero
mg . Whereas pure low thrust is an easy extension from the mixed thrust,

pure high thrust evolves from the mixed thrust at a discontinuity.

When the combination of engines is being used, ) will still carry
a necessary scaling for the low thrust phase, but it must also match,
or remain below a threshold. The threshold for the combination, instead
of being constant, is an increasing function of time. The final thresh-

old, § can be lower than Gl(tf) if a part of the optimum power

3,
supply is dropped. With such a decrease in mass, the high thrust engine
is, of course, more efficient. As the low thrust engine burns its fuel,
its efficiency (ci) can be higher for the same acceleration. This

increased efficiency of the low thrust is represented by the increasing

threshold Gl(t).

There are some special cases which reflect the nature of the final

threshold. When m, = 0

§,(tg) = 35

the initial and final thresholds are equal. In the other extreme if

§;(tg) = 85

there is no change in the threshold at the final time. Thus for inter-

mediate values of m,
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81(tg) < 85 5 8;(ty)

This change in the threshold and the difference in the manner J1 enters
the payload expressions are the reasons Ag is considered different

from 51, although they might physically represent the same engine.

As long as m, < mp, an increase in m, only raises the final
threshold. This will diminish the final impulse, since it is then less
efficient. If there is no final impulse, the only effect will be an
increase in the payload equal to the increase in mg - However if m, 2
mp an increase in m, also increases the efficiency of the low thrust
phase. Both the initial and the final impulses will diminish due to
the increased low thrust efficiency. There will also be an increase
in payload, but now it will be less than the increase in m, .
For increasing times of flight, Ly will become smaller as the
low thrust is operating at a lower acceleration (higher efficiency).
Not only will the payload increase, but both the initial and final
thresholds will increase. This is best seen by observing that for
m_ =0

e

61(tg) = 65 = gmy
The threshold increase is proportional to the increase in payload.

Both the initial and final impulse will diminish in size. For non-

zero m, Gl(t) will increase at a lower rate and reach a smaller value,
since the time varying portion of 61 is Lz(t). Although both impulses
will still be used less, the increase in 63 will be less than the in-
crease in 61 and the final impulse will diminish less than the initial

impulse.

Thus there are two aspects of this formulation which favor the

low thrust: an increase in either mg, Or the time of flight. As is
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shown here, the effect of the two on the relative sizes of the initial
and final impulses is different. These general observations are veri-

fied in the application of these equations to specific problems.

2.3 A convenient change of variables

Certain constants of motion have evolved in the classical study
of transfers between orbits in a central inverse square gravitational
field. For the very small accelerations of a low thrust phase, these
parameters vary slowly enough to permit additional simplificationms.
The previously stated optimal control problem is implied in total,
except for the state differential equations. This new state could be
a vector made up of orbital elements. The appropriate necessary con-
ditions for the optimal controls, A, are presented without the deri-
vation which would closely parallel that of the previous section. The
different state formulation is used in order to take advantage of the
classical notation for the orbital transfers considered in future
chapters. These equations simply represent a restriction on the admis-
sible gravitational field and then a nonlinear change in variables.

As such they do not change the nature of the optimal solution.

For the optimization of the payload, m for the state differen-

tial equation
X = B(x,t) (&) + Ay + Ag)
the Hamiltonian is
Ho= 2B+ A+ A9 - 8141 - 85050 - 3o

where

x is a vector of orbital elements
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B(x,t) is a matrix function of the state x and time.
Note that the state, x, and the costate, A, are different for this
formulation than for the previous section. However the accelerations,

A, are the same. The present costate obeys the differential equation

AT o BH _ T BEY) (A, + Ay + A
S

9B
where care must be taken with the third order tensor notation for §=

X
Identifying the coefficient of the acceleration vector in the -
Hamiltonian we see that the primer*® for this problem is

p =B 2

Although the costate is not constant during an impulse, B will also
vary such that the primer p and its first two derivatives are still
continuous across any impulse in the control. Having made this observa-
tion, the optimal controls are specified the same as before, having
properly adjusted the nomenclature. This should be the case since this
new formulation only represents a change of variables. The Hamiltonian

is maximized, as before, by the controls

A, = Q(t) p

ooR if IRI = (Sl
51 = {

0 if ]R! < 61

(te)

P if IP_‘ = 53
Ag = {

0 if |p] < S5

*Lawdenl? uses this expression for the primer in discussing a problem
similar to the formulation of Chapter 4,
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with Q and the thresholds & the same as before.
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Chapter 3

TRANSFERS IN A POSITION INDEPENDENT GRAVITATIONAL FIELD

The general results of Chapter 2 are applied to problems with
two classes of expressions for the gravitational acceleration R(x).
Problems with R(x) = 0 are considered first, although, as shown below,
these results are applicable to problems with R(x) = g = constant.
Chapter 4 considers a second form for R(x). Since the state differential
equation for this problem is independent of the state, the primer dif-
ferential equation will also be independent of the state. The primer,
and then the state differential equations can be easily integrated
during the low thrust phase. An iteration may be required to determine
the boundary conditions on the primer. Since the vector direction of
any high thrust impulses are specified by the primer, only the magni-
tudes of the impulses remain to be chosen. If the desired power plant
mass, mg, is small enough, there can be only initial and final impulses.

This may also be true for all transfers in field free space. After the

assumption that only initial and final impulses may be used, the general

transfer is analytically solved as far as possible and the results
applied to the simpler problem of a change in position with no change
in velocity. Finally the problem for a change in velocity, with the

final position unconstrained, is solved.

The most general transfer in a position independent gravitational

field is represented by the state differential equation

(3.1)

with the boundary conditions
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The components Ax and AV of the final conditions represent the effect
of the control accelerations. The equivalent problem for changes in

those variables in field free space can be used without loss of gener-
ality. For notational convenience, the A's are dropped for the re-

maining discussion. Use

=1 =% =3
3 °te
x(0) = 0 5(tf) =ac” s = —— s (3.2)
x(0) = 0 é(tf) =cV
where
s = the dimensionless vector change in position
V = the dimensionless vector change in velocity
te
TE =y = the dimensionless time of flight (3.3)
ac

and as before o and c are the parameters which define the low and high

thrust propulsion systems.

3.1 General Transfers in field free space

A complete statement of the optimal control problem is given for
the maximization of payload using the combination of propulsion modes
for an arbitarary, fixed time transfer in field free space. The results

of Chapter 2 are applied to yield a set of necessary conditions.
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Assuming that only initial and final impulses are possible, the low

thrust equations of motion can be integrated. The results of the inte-

gration are summarized and the resultant payload expressions for a

change in position with m, = 0 are given. For the maximization of the

payload

where

Mo

= Lj(Ky-Ly)

governed by the differential equations

subject to the

x(0)

x(0)

Ap + Ay * Ay
- 32 3 1Al
- 32 K A
%

boundary conditions

i}
(K==
(g}
t
o

"

i(tf)

.ql

i

K=
!
0

<

x(te)

jw

ifm

ifm

fA

v

m
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J(0) = 1 K(0) =1
L(0) = o
the Hamiltonian
_ 2T . T ! 2 T _ T _
H=- A" x+ 2 A Q Agm v A A 51|ﬁ1| AT AL 63'&3!

must be maximized by the choice of the primer, A, and the controls, A.

The primer must satisfy the differential equation
:X;:

and the optimal controls are

Ag = Q) A(D)

@ A(t) if [A(8)] = 8,(1)
A=

0 if [A(E)] < 85 (1)

© A(te) if JA(te)|= 654
53 =

0 if |A(te)] < 84

where Q(t), Sl(t), and 63 are given in Chapter 2. If there are no
intermediate impulses, Q(t) = Ql’ and we can compare |é£(t)| with the

thresholds

8,(t) = Q 6;(t) (3.4)
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L L
1( 1)[ 1 .2 .
= {1- &} 1 + = L°(t
K Xy p ( )] HEme <M
=1
(SA acC
Mg 1 2
E—2[14,1_1\_L(t)} if my 2 m
1 e
S = Q 5 (3.5)
L 2 m
- 6,0+ sy () 2
A 1 K,

to verify the local optimality of no intermediate impulses. Since 5£,
GA, and GB are related to the original variables by the same Q(t), we
can use Ql without loss of information.

The magnitude of )\ is of particular importance since it must be
equal to a threshold at the time of any impulse and less than the

threshold during the remainder of the transfer. A possible solution for

the primer differential equation is

where a and b are constant vectors which remain to be chosen. The

square of A
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has only one possible zero and the second derivative

is positive at that zero. Thus Az can have a maximum only at the ini-
tial and final times. If m, = 0, since 51(0) = 63 and 51(t)251(0)’
there can never be an intermediate impulse. As m, increases, 64 in-
creases. An extension of the previous logic indicates that if m, is
small enough, &, will still be small enough so that |A(t)] < §, (1)
and there will be no intermediate impulses. It is believed that this

conclusion will be true in general, but it has not been proven as yet.

If, by assumption, only initial and final impulses are allowed,
the low thrust equations can be analytically integrated and the
problem solved except for the specification of the magnitudes of the

impulses. Those steps are carried out in Appendix C. The maximum pay-

load is
2 2 .
Jq [(Kl-Ll) + me] if my < ms
m =
T J 2 X 2
1 1 ifm,>m
1 1 L 2 e —-'p
m, 1
where
J, = exp ( 5 v2)
K, = exp ( = v, )
1 p z V1
K
1 2 2 T
L, = \ﬁx + W + Uy Wy UW
1 Vet 0 0 0 "0 = —
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and the positive constants Ug, Wos Vi and v, are determined by the

simultaneous solution of the four relations

2 T
2 1 [1 T (1 \ 55 (1 VZ)T
u,“ = ViV 4 £ T - a3+ 2 V's  (3.6)
0 detz - TNT7 WO) ) 3T \2 0o/~
2 2 T
v Vv s S
wOZ = 12 [(% + _._.:L) VTV + (% + __1‘.) i
det Y/ =~ 0 T
2 /1, Vi\/1 Vi
] ?<§+ﬁ_>(7 +ﬁ_>§Ty} (3.7)
0 0
Yo Yy
T - oc GA or ( v, = 0 and T <uc6A) (3.8)
Yo Yo
— ucéB or ( v, = 0 and = <ac63) (3.9)

where

-l 3
From the nature of these four equations it is clear that their analytic
solution will, in general, not be easy, If a final impulse is used, an
analytic solution is not possible when mg # 0 due to the existence of
the exponential term, Klz, in SB (Ll/Kl is an expression free of K1 ).
Analytic solutions will only be possible for pure high thrust, pure
low thrust, or mixed thrust with m, = 0, plus a few other special cases

of minor importance.

Change in position

The transfer with V = 0 is solved in Appendix C for m, = 0. The

four expressions for the payload and their regions of use are given
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below. Pure high thrust

= -2 S
m_ = exp (-2 T)

is used if 1< 6. Mixed thrust

2
is used for 6. < T < 6 (1 + %) . Pure low thrust is used if
2

> 6(1 + %) and has two payload expressions dependent upon the size of

m_:

e
= \2
_ O s) .
(1 \I?? +me 1fme_<_mp
m. =
1 R
—_— ifm, >m
1 1 6s € P
w3
Me ¢
where

It is not possible to get the analytic solution for mixed thrust

transfers for a non-zero me.

General transfers in field free space have a complete analytic
solution only if m_ = 0. Otherwise the matching of léll with the
thresholds, GA and GB’ must be done numerically. Since retention of
a part, or all, of the power supply is of particular interest, study
of problems which require a numerical solution will be deferred until

more interesting transfers are considered.
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.2 A change in velocity in field free space

If the final position is not specified, intermediate or final
impulses can never increase the payload. There is not a problem in
matching the final threshold, ) for non-zero mg . Thus a more complete
analytic solution is possible. However if m, > mp, GA can not be
matched analytically. All cases except this one have an analytic ex-
pression for the payload. The coordinates for this problem can be
chosen so that vector notation can be dropped, since all velocities and
accelerations will be along the same coordinate. We wish to maximize
the payload, m subject to the previous differential equations for

J, K, and L and also

X =A, + A, +A
with the boundary conditions

x(0) = 0 and x(tg) = ¢ V

and by assumtion V>0. The Hamiltonian

-

H= A, - == A% + A, - Eﬁ JAL ]+ AL - EE [A;]
20 2Q "™ 17 Qq 1 3°Q 3

is maximized if XA satisfies the differential equation

and the optimal controls

Ay = QA (t)
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@A, () if |A£(t)| =8, (1)

b
i

0 if [Ag(t)[ < 8, (1)

M

@A, (tg) i |A2(tf)l = 8

0 if IAQ(tf)I <8y

are used, where Q, GA, and GB are given earlier.

If iAzl is equal to §, at the initial time, it can never be equal to

5A(t)i GA unless A2 = L1 = 0, Further, |A can only be equal to 6B if

g
mg = 0. In that case, a final impulse has the same effect upon the
payload as an initial impulse. Thus for the mixed thrust problem, inter-
mediate impulses are never optimal, and no approximation or compromise
is made by allowing only initial impulses for this problem. The pure
high thrus? problem (AZ = 0) has a unique value for the payload, even
though the optimal control is not unique. An initial impulse produces
this optimal payload. For a change in velocity in field free space,

intermediate or final impulses can never increase the payload, if

initial impulses are allowed.

The derivations of the five appropriate payload expressions are
in Appendix C. There is one expression for the pure high thrust payload,
and two expressions for both mixed thrust and pure low thrust, depending
upon the relative sizes of mg and my, . Table 3.1 gives the optimal
expressions for m. along with the regions of applicability based upon
T, My, and V. Figure 3.1 shows the payload as a function of t for m, =
.05 (5% of the initial mass). Since the pure high thrust is applied im-
pulsively, its payload is not a function of t. However, the payload for
the pure low thrust transfer increases with T, since the required

acceleration is lower. The mixed thrust payload is larger than either
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of the others. Note an improvement in payload even for times of flight
for which the low thrust is not competitive (t< 3.) Figure 3.2
is a composite plot of the payload for different values of m, . Similar

results are obtained for other changes in velocity.

Some conclusions can be drawn about general mixed thrust transfers
from the results obtained in this chapter. If the low thrust differ-
ential equations can be analytically integrated, the problem of mixed
thrust transfers can be reduced to the relatively simple determination
of the magnitude and timing of any impulses. Except for m, = 0, and
certain other special cases, the mixed thrust problem can not have a
complete analytic solution due to the existence of transcendental
functions in the necessary conditions. The largest improvement of the
combination over the pure high thrust is for larger t and m,. The
largest improvement over pure low thrust is for shorter t and the
largest improvement over either is for intermediate T when the two

modes are competitive.
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Chapter 4

NECESSARY CONDITIONS FOR OPTIMAL TRANSFERS
BETWEEN COPLANAR COAXIAL ELLIPTIC ORBITS

The nature of mixed thrust transfers between coplanar coaxial
ellipses is approached by investigating the separate properties of pure
high and pure low thrust transfers. Some special classes of pure low
thrust transfers are discussed to enhance the understanding of the com-
bination. For each class,.optimum transfers and payloads are analy-
tically obtained. The characteristics which contribute to the combina-
tion are discussed. The mixed thrust problem does not have an analytic
solution due to the interplay of transcendental functions. The complete

necessary conditions as derived in Appendix D are presented and discussed.

A set of six parameters which could describe a general three
dimensional orbit in a central inverse square gravitational field are
the size, shape, and orientation (three Euler angles) of the orbit,
along with the position on the orbit. Of these six parameters, this
class represents a change in only two, the size and shape of the orbit.
Of particular importance is the fact that optimal three-dimensional
transfers which only change these two parameters do not affect the
Euler angles. Rendezvous, which specifies the position on the orbit,

is another class of transfers not considered here.

Some practical assumptions are employed which constrain the trans-
fers and lend the analysis to simplification. The gravitational attrac-
tion is assumed to be much stronger (by a factor of 100) than the low
thrust acceleration. Thus during the low thrust phase of a transfer,
the orbital parameters, which would be constant for no control, vary
slowly. The transfers will be a slow spiral over many orbital periods.
4

Typical ion engines are assumed to have a thrust on the order of 10~

g's. The gravitational attraction is 100 times larger than that for
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transfers in earth orbit out to about 10 earth radii. Within this
constraint imposed by the low thrust, pure high thrust transfers have

a particularly easy solution.

Implicit in the assumption of a long low-thrust spiral over many
orbits is the further assumption that half an orbital period is a
negligible interval. The fixed time of flight for this problem formu-
lation will be applied only to the low thrust phase. Initial or final
impulses can occur at any time during the one orbital period before
or after the low thrust phase. This makes these initial and final
high thrust phases the equivalent of open time of flight transfers.
For such transfers, impulses must be applied only at maxima of the
primer. Otherwise, the primer would be larger than the threshold,
which cannot occur on an optimal trajectory. It is shown in Appendix
D that the primer for this class of transfers can have maxima only at
the apses of the orbit. Thus optimal impulses can only occur at the

apses.

Pure high thrust transfers have two impulses applied at opposite
apses of a coasting orbit and pure low thrust transfers are a slow
spiral over many orbital periods. However the form of the combination
is not clear. Any impulses must be at an apse, but the number and
timing during the transfer of these impulses must be determined, along
with the parameters which define the intermediate low thrust phases.
The timing of the impulses are assumed for this chapter and verified
in the numerical analysis described in the next chapter. Two initial
impulses are assumed at opposite apses of a coasting orbit prior to a
single low thrust phase. After part of the low thrust power supply is
dropped at the end of the transfer, another impulse is allowed. No
intermediate impulses are allowed in this formulation, although the
necessary conditions to verify the local optimality of this assumption

are presented.
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In order to analyze the problem, a convenient set of differential
equations is necessary which applies both to high and low thrust
accelerations. A classical set of perturbation equations is used.

The properties of the corresponding set of costate differential
equations are discussed in Appendix D, before using them in the solu-
tion for the mixed thrust necessary conditions. The pure high and
low thrust solutions discussed in this chapter closely follow from
the high and low thrust phases of the mixed thrust solution presented

in Appendix D.

4.1 The Differential Equations of Motion

Classical perturbation differential equations as defined by
Edelbauﬁsand others can be used to define the dynamics for the problem
described in the previous section. These equations describe the
change in orbital elements due to a small enough perturbing accelera-
tion. In this case we will specify that acceleration in order to
accomplish a desired transfer. Although these equations cannot be used
for general impulsive accelerations, they are appropriate for any
impulse which does not change the eccentric anomaly, E, of the orbit.
As will be shown, this special case is indeed optimal, and these
equations apply. The optimal control for the low thrust and necessary
conditions for the high thrust are both related to the primer vector
p. This vector will be specified for this problem and its properties
discussed to complete the statement of the basic differential equations

of motion for this problem.

Classical perturbation equations use semimajor axis, a, and
eccentricity, e. For convenience of notation in further sections ©

as defined by

cos 28 = e
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The derivatives of 6 and e are

will be used instead of eccentricity.
The accelerations used are coordinatized for

simply related.
convenience in a rotating frame such that

where AR is in the radial direction from the center of the force field

and AT is perpendicular to it, in the plane of motion.

For the state vector
(4.1)

and the general acceleration A, the state differential equation is given

by
x = B(x,t)A
where
JE 2a sin 296 2 a esin E
B(x,t) = l-e Eos E

% (e+e cosZE—Z cos E) - %'sin 26 sin E

(4.2)

and the differential equation for E during any one orbit is

(4.3)

M
S T
dt T-¢ cos E
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which gives

. T
E-e sin E = ;? (t~t0)

if a and e are sufficiently constant. The transfers being considered
have only a small low-thrust acceleration, or an impulse which does not
change E. Thus a and e change slowly enough, or E is not changed,

by assumption.

The optimal control for this state is related to the primer vector
given by
p=B2

for this state differential equation. The time history of X will be
discussed in future sections. In terms of the true anomaly, £, which

is related to E by
f _ T+e E
tan 5 = ‘/——- tan > (4.4)

the primer can be written as

C(l+e cos £) + Trs—os
P = (4.5)
C e sin f
where
c- 2 B xla . xz
M sin 28 7 cos 26 (4.6)
D= - J-ﬁ- A tan 26 sin 26 (4.7)
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The primer, like the acceleration, is coordinatized in a rotating frame.

Taking this into account, the derivative of the primer is

D e sin f

(1+e cos f)3/2
I |
dt R3
C V1+e cos f + - D
Vi+e cos T

For this derivative, all parameters except f are assumed to be constant

or very slowly varying.

The costates A and )\, must then be chosen so that the desired

1 2
transfer is accomplished and any necessary conditions are satisfied.
The following analysis assumes C and D are slowly varying or constant
and is not concerned with their value. Only the general properties of

the primer on an optimal trajectory are desired.

Impulses are optimally applied when the magnitude of the primer
is a maximum and equal to a threshold §. Also at an impulse, the
primer and its first two derivatives are continuous. Assuming C and
D are approximately constant over the period of any one orbit, the
magnitude of the primer

2

p” =pp = [C(1+e2) + 2C D] + 2C2x+ —D’T
(1+x)

where

x = e cos f

can be a maximum only when its first derivative is zero

3p { 2
- 7] (oL —

5 L (1+x)3] (-e sin f)
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and the second derivative is negative.

3222 = Z[C2 - —23——-](-x) + 6D2 (~e sin f)z
5£2 (1+x)° (1+x) %

One possible maximum occurs when the bracketed term equals zero. This

solution is

or

For this solution, the second derivative is always positive and there-
fore it represents a minimum. The existence of the inverse cosine is

thus of no interest here.

Two other possible solutions occur when

sin £ = 0

The second derivative can be negative for these solutions and they

thus represent possible maxima. Note that E and f are identical at

these possible maxima

or

When the eccentricity, e, is zero, the primer has a constant magnitude

since all of its time derivatives are zero.
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For convenience of notation define a signum function T such that

+1 at apoapse

(4.8)
-1 at periapse
Note that T = - cos f = - cos E at the possible maxima of the primer.
Thus
P 4 0
P = B = - JE
dt RS>
0 p'
with
p = C(1-Te) + -2 , (4.9)
1-Te :
p' = CVITTe « —D (4.10)
VI-Te

when the magnitude of the primer is possibly a maximum.

If p is a maximum and equal to a threshold 8§, an impulse is opti-
mal at that apse. The impulse is applied in thé direction of the
primer which in this case is tangential. Since the orbital velocity
is also tangential at an apse, such an optimal impulse only changes
the altitude of the other apse and not E. Thus the earlier differential
equations are indeed applicable for optimal impulses at an apse. A
further necessary condition across an impulse is that the primer and
its first two derivatives are continuous. In this notation, p ahd p'
will be constant. For an impulse at an apse, C and D will change in

a predictable manner dependent only upon T and the change in e.

Having established the importance and characteristics of the primer

for this class of transfers, it is now possible to determine the

54



nature of optimal low, high and mixed thrust transfers. Much of the
algebraic gaps of the following sections are covered in the complete

derivations of Appendix D.

4,2 Pure low thrust transfers

The complete solution for optimal low thrust transfers between
coplanar coaxial ellipses is presented in this section. Basic to the
problem is the assumption on the magnitude of the control acceleration,
é&. A, is'so small that the secular change in the elements a and 6
during any one orbit is small. The transfers will thus spiral over
a long time of flight from the initial to the final orbit. Since
the periodic changes in a and 6 are also small and of little interest,
their variation can be eliminated by an averaging process. The dif-
ferential equation for the remaining secular variations in elements
can then be solved. The general time history of the state, primer

and payload for this class of transfers is given and discussed,

especially in its relationship to the mixed thrust transfers.

The classical optimization problem for the maximization of

payload during a low thrust transfer maximizes the integral

t

£
1 2
"Zfofiszdt

For the differential equation

X = B(x,t)A,

the Hamiltonian as given by

|
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carries the full information about the dynamics on the optimum trajec-
tory and maximization of H maximizes the integral given above. 52 is
chosen to maximize H by

- 8y =
Ap =BA=p

for this problem the low thrust acceleration is identically equal to

the primer vector. Thus we have

The dynamics for this problem are given by the canonical differen-

tial equations

[oie
]
n
e
lov]
{>

>e
]
1]
=
Q)l o34
[l 1w
jov]
[ >

where care must be taken with the third order tensor notation in the
term 3B/3x. Since the initial and final conditions on x are specified,
the boundary conditions on A must be chosen to accomplish the desired

transfer.

These equations contain the complicating periodic variations in
elements which are assumed to be small. Taking the time average of H
over the period of any arbitrary orbit will eliminate all such periodic
terms in H and also in the differential equations implied by H. Let

H1 be the averaged Hamiltonian obtained by

t+t

1 P
H1 = Jf H dt
P “t

|
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o

H =

E+2m
1 7 g H(l-e cos E) dE

E

As shown in Appendix D, the result of this operation is

2

1
=3 21

2 5
1 [4(x1a) t g A

a
H
The parameters A and x wWere assumed constant during any one orbit and
they thus now represent the slow secular variation in A and x. From
general optimal control theory we also know that

dH1 3 aHl .
dt ot

Thus on a low thrust trajectory, the averaged Hamiltonian is a constant.
Thus we also know that the average of the acceleration squared is con-

stant.

The differential equations for the secular variation in parameters

can be obtained, as before, but now from the averaged Hamiltonian

da M1 4, 3

Eraal ) SRS
de:_a_l_{l-:_s_xa

It TN, T Bu M2
@M
IE 53 a 1

da 3H
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As shown in Appendix D, for the similar low thrust phase of a mixed
thrust transfer, the equations can be completely integrated analytically.

The results are given for the transfer between

a(0) = a, a(tf) = ag
8(0) = o, 8(te) = 0
in terms of the parameters
_J2
[
g .
b=\ (o5 - 0
= 2
h=1-2+ycos Yy + ¥y
B, = ——%—~»= dimensionless gravitational constant
4c a,
e
TS — = dimensionless time of flight (4.11)
ac
The maximum payload is
(1-L )2 +m Me &m
1 e p
mo =
1
m_ >m
1+ 112 e =P

58



with

mp = L1(1~L1)
2 .2 2h
Ly = 8 =

During the thrusting phase

2 2
L(t)=L1%‘—

£
;2(?7 - [1 - (1-y cos ¥) %]2 + [Y sin ¥ t—f]z (4.12)
0(t) = 6, + Jg sin”! [sin vy ‘/aa; %.f.] (4.13)
C(t) (1+e cos ) + WIE)B%)_? )
p(t) =

C(t) e sin £

where

(1-y cos ¥) - h %

ciry = L B £ sy
te a, a, sin 26 5 cos 20
(4.14)
1 u a{t . :
- = — af—= vy sin ¢ tan 26 sin 26
te Va2 V22

From the differential equation in 6, it is clear that 6 progresses

D(t)
(4.15)

monotonically from its initial to its final value. The semi-major
axis, a, will progress monotonically from its initial to its final
value only if the change in eccentricity is small enough. Otherwise

there can be a maximum value reached for a. The second derivative of
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a is always negative.

Of course, the earlier generalizations about the maxima of the
primer on any one orbit still hold. But, unfortunately, the time
history of these maxima of the primer is too complex for any gemnerali-
zations which might lead to the understanding of the mixed thrust
transfer. Although it seldom forms a part of a mixed thrust transfer,
there is one special case which has a significant simplification.

When the initial and final eccentricities are equal, ¢ = 0, and the
eccentricity is constant during the entire transfer. For this case,

a(t) simplifies to

) t
\/m =1- (1-v) ff

The average orbital velocity, AJE-, progresses linearly from its

initial to its final 1level.

Also for this case, the coefficients which define the primer are

constant during the entire transfer

c=1 Ju 1-%
tf a2 sin 28

Since D is zero, the primer has a minimum at apoapse (f = 7) and a
maximum only at periapse (f = 0).  Also this maximum is constant from
orbit to orbit, since C is const;nt. Further, when the initial and
final orbits are circular, the radial component of the primer is

always zero. Thus the primer is a constant in the tangential direction.
Unfortunately these results are not generally applicable since the

magnitude of the primer is very sensitive to small changes in 6 and .
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4.3 Pure high thrust transfers

Within the constraints imposed by the low thrust assumptions,
optimal pure high thrust transfers have an easy solution whichiis well
documented. The level of the low thrust with respect to gravity re-
stricts the transfers to a maximum change in radius of 10. Further,
since the low thrust transfer is a slow spiral, the time of one orbit
is a small fraction of the transfer times being considered. Thus
high thrust transfers can be approached as if the time of flight were
free. For ihis case a Hohmann transfer is optimal, with two impulses
applied at the opposite apses of a coasting orbit. For short time
rendezvous, or changes in radius Rf/R0 > 11,94, three or more impulses
can be optimal, but these cases are excluded by the low thrust assump-

tions.

Pure high thrust transfers will be analyzed from an optimal control
point of view. The conditions on the primer which contribut to the
optimality of the transfer will be discussed. Many of the conditions
described are also appropriate for mixed thrust transfers. The timing
(at an apse) and direction (tangential) of any impulses is defined by
the discussion of the primer in a previous section. ~With this know-
ledge, high thrust transfers can be analyzed from the basis of velocity
changes. That approach is taken in Appendix D for the discussion of
the high thrust phase of a mixed thrust transfer. This section will
use the primer directly to determine the optimal high thrust transfer
between coplanar coaxial orbits. The primer, payload and optimal

trajectory will all be defined.

The classical payload maximization problem for high thrust trans-

fers maximizes the integral

t

A
- A ldt
0 =1
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for the state differential equation
X = B(x,t)A;

The Hamiltonian as given by

T
H=2"B A - [A]

is maximized by the choice

.Note that for this transfer

H=20

Since A1 is optimally impulsive at the maxima of p and zero for the
rest of the transfer, x and A are constant except at impulses. In the
nomenclature of this chapter C and D which specify the primer are also
constant except at an impulse. As shown in Chapter 2, the primer and
its first two derivatives are continuous at an impulse. These conditions
specify the changes in C and D after an impulse, in terms of C and D

before the impulse.

For the transfer between the orbits

a(0)

]
[}

a; a(tf) a,

I
[«
[
fe>]

8(0) 0 S(tf) =90,

the optimum transfer has two impulses applied at the opposite apses of



the coasting orbit specified by aq and 61. The coast orbit will be
between the greater apoapse and the periapse of the other orbit. For

T, such that

0

+1 if a2(1+e2) > a0(1+e0)

-1 if az(l+e2) < a0(1+e0)

the radii at each impulse is given by

i

1= ao(l-TOeO) a1(1~T0e1)
R2 = a2(1+T0e2) = a1(1+T0e1)

From this condition, the parameters of the coasting orbit are

1

a; = 7 (Ry + Ry)

Te < R, - Ry
01 ~ R, * R}

A necessary condition for the application of impulses is that the
primer be equal to 1 at each impulse and less than 1 at all other
times. As shown in section 4.1, the primer can only have maxima at

an apse.

For this transfer, the primer at each impulse is

D
4 - 1
py = 1= Cr(1+Tpeq) + poprar
0°1
D
:1=C(1-Te)+__}___.-
) 1 0°1 T-T,e;

63




equal to one. C1 and Dl’ chosen to satisfy this set of conditions, are

_ 1
¢y =%
b, = 2R1R2
1+ )2

The value of the primer at the opposite apse before the first impulse
and at the opposite apse after the second impulse must each be less than
1 for this transfer to be optimal. As shown in section 4.1, p' as given
by equation 4.10 and the primer p must be continuous across each impulse.
These two equations can be used to find the appropriate C's and D's on
the initial and final orbits, from which the primer at the opposite

apses can be determined. After some algebra, the primer at the oppo-

site apse before the first impulse is

p- = . (3__-'1:_(2.?9 p + 4 p ]
0 1-Toeg /71 VIFT,e, (1-Tge,) 1

and at the opposite apse after the final impulse, the primer is

2+T e
v _ 0°f 4
Py = <‘“““‘1+T P )Pz * . )Pz'
0°f

0°f VT e (14T

where

—

b =1 R 3R
1 2z R1+R2 R1+R2

-~

\/2§2 R2+2R1
R1+R2 R1¥R2

, U1
Py =7

For this transfer to be optimal, p& and p; must both be less than 1.
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The payload for this transfer

where

-~
[}

L= [~ 3 levl]

is (locally) maximized when the previously described necessary conditions

are satisfied).

4.4 Necessary conditions for mixed thrust transfers

Pure high and pure low thrust transfers have complete analytic
solutions within the assumptions of this chapter. Only the necessary
conditions are derivable for the combination of engines. Appendix D
contains the analytic derivations of these conditions. Those results

are presented and discussed in this section.

During the low thrust phase, the scaling on the primer is still
chosen so that A is adequate to accomplish that portion of the transfer.
However the threshold which indicateé the time to use the high thrust
is no long simply given, nor is the scaling of the primer arbitrary for
the high thrust phase. Since the matching of the primer with the thresh-
0lds involves square roots, exponentials, and trigonometric functioms,
it is not possible to analytically satisfy the necessary conditions.

The numerical techniques used for that purpose are given in the next

chapter.

The necessary conditions presented in this section are for a specific
assumed mode for a mixed thrust transfer. There are two high thrust
phases separated by a single low thrust phase. The first high thrust

phase allows two impulses at opposite apses of a coasting orbit. Since
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half an orbital period is assumed to be a very short time, the effect
of the low thrust, if used during this interval, is ignored. At the
final time, only one impulse is allowed. The low thrust engine is
used to spiral between the two high thrust phases. Further necessary
conditions will be described which verify the local optimality of

these assumptions.

Figure 4.1 shows two optimal trajectories for which two impulses
are used., The pertinent orbits are labeled by the ei for that orbit.
The pumbers at the apses indicate the subscript on the primer for
that apse. Below the figure is a table of the values for the primer
and the thresholds after they have been normalized by a convenient
constant. For the first transfer, since only one initial impulse is

used
Ipzl = 61(0)

and Ipll and [p;l are less than &;(0). There is no "first" impulse.

Since there is a final impulse

}Psl = 63

and ]pf[ and ngl are both less than §;. For the second transfer
lpll = fpzl = 61(0)

lpsl < 53

Also }p0| and !P;l are less than §,(0), and [pfl is less than &5.

During the low thrust phase for both transfers

Ip(t)] < 8,(t)
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440880 &8s L-

Figure 4.1 The apses of interest on optimal trajectories

For the first transfer For the second transfer
61 = 1.142 65 = 1.146 6, = 1.186 65 = 1.4453
Py, = 1.142 Pz = 1.146 p, = 1.186 Pz = 1.360
Py = 669 . by = .436 P, ~ 1.186 Pg = .529
p, = 1.142 p; = .814 Py = 846 pg = .529
p2+ = 1.011 p2+ = .759
S

Table 4.1 The primer and threshold at the apses of interest
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Analytically, the expressions for the primer at the appropriate apses

are determined by the sequence of calculations

1 2B
Cz = Qlac ;—~'(1'Y cos )

2B
1 2 (JB .
27 qyoc _r“(‘/‘—s“ysm“’)

]
[

e
N
|
3
o
~
@]
(%)
5
+
o
N
—

lge]
~
i
-3
<
—
@]
&
9
'
[w]
(3%
Nt

1 1
py = - (1 + —5)p, + p,'
Fl 1 ToG1
1+G, 2
p':-__ +.___1_._
1 F, P2t FT G P2
- 1 1 '
Pop = - (I ==py * =5y
& Gy Fyp

At the final time for

1 232 A
€z = Qac T (cos v - v)

28
1 2 (5 .
Dy = - Qac T (4; sin w)
Gy
Pz = Te(Cq F, * D3
- F3
Py = Tg(Cy 5, D5
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= 1
Pg 7 - 1+ s )P3 + - 1 p3'
[‘f I‘f Tfo

During the low thrust phase, for

28
¢ = goe Vi (a-y cos 1) - n )

p(t) = ¢20)L b
( Jaz 3
the primer is
p(t) = T(C(t) FHd + D(8))

The thresholds are given by

2 2 1 2t :
3L [ g Ly ] Hrmeim
P £
_ 1
51(12) =<
m
T 2t
1+ = L.° = ] ifm, >m
1+ l L 2 [ m, 1 tf P— P
m 1
e
J 2[(K -1 )2 +m ] if m_<m
1 1 71 e e - P
1 1
S
2, 2
J17K .
S if m 2 >m
1+ o L1 P
e
mp = Ll(Kl-Ll)
and as derived in Appendix D
- . 3 -
Jy, = exp [ -Sy Ty (G¢ - Gz (4.16)
60 82
K, = exp [-S; 5, (Fy-Fy) - 8, ¥, (6,-G))1 (4.17)
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£h (4.18)

®1 = 9%
lpyl = &4 or
lpyl < 8
62 = 8
lp,| = 8 or
’pzi < 61
05 = b¢
|p3| = 84 or
Ipgl < 84
and
Ipol < <S1 Ipf! < 63
+ -
Ipzl < 51 'p3l < 63

p(t) < &;(t)

The first three equations must be satisfied by the choice of 61, 6,55
and 6. The final set of inequalities must be satisfied to verify the
optimality of the assumptions on the timing of the impulses.

If all of these necessary conditions are satisfied, the trajectory
will (locally) maximize the payload. A method for the numerical

determination of the 8's which satisfy these conditions is presented

in the next chapter, along with the numerical results,
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Chapter 5

NUMERICALLY DETERMINED OPTIMAL COPLANAR COAXIAL TRANSERS

The necessary conditions derived in Chapter 4 provide a verification
of the (local) optimality of a transfer, but do not lead to a convenient
numerical iteration. The payload derived in Chapter 4 as a function of

the three free parameters

8=149 % | (5.1)

and its first two derivatives with respect to the 8§'s as presented in
Appendix D are used in the numerical iteration. As discussed in
Chapter 4, the iteration assumes that two initial impulses (at the
opposite apses of a coasting orbit) and one final impulse can be used.
Additional necessary conditions were presented which can be used to
numerically verify the local optimality of these assumptions. The
timing of the impulses was picked using the knowledge of optimal pure
high, and pure low thrust transfers and an assumption on the manner of
their combination. The numerical properties of the maximum payload are
discussed before describing the numerical techniques used to arrive at
that optimum. For examples, transfers are considered between seven
sets of initial and final orbits. The payload improvements and optimum
trajectories are discussed. The assumed timing of the impulses was

verified as being locally optimal for all transfers which were studied.

5.1 Numerical definition of the maximum payload

The payload expression of Chapter 4 must be numerically maximized

by a choice of the free parameters 6. Before describing the numerical
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iteration used to reach that optimum value, the numerical properties

of the maximum are presented. The payload expression

2 2 .
J1 [(K1~Ll) +me] if m, < mp
m =
™ J 2K 2
L - if mg > m
1+ ﬁg Ll

is explicitly expressed as a function of the free paramters § using
equation 4.16 for Jl’ 4.17 for Kl’ and 4.18 for Ll' It is noted that

J; is a function of 63 and that K1 is a function only of 61 and 6,-

1
If

is an arbitrary small variation from the optimum 8, the Taylor series

for the payload about the optimum is
= T 1 T
m, (8+68) = m (&) + g 68 + 7 68688 +

where all derivatives are evaluated at the optimum value for 8. The
series converges if all derivatives are finite and 66 is small enough
so that the higher order derivatives can be neglected. The explicit

expressions for the first derivative vector

am
m
ael
g - amTr 3} BmTr
2 38 862 (5.2)
om
_r
995
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and the second derivative matrix
BgT
G = 55 (5.3)

are given in Appendix D. For this 8§ to (locally) maximize the payload,

it is necessary that each component of the term
Teo =
g 86 = gldel + gzdez + g3603

be equal to zero. Otherwise a small variation

for k small enough, could increase the payload. If g?ég is zero, it is

sufficient that the condition

be satisfied at a maximum for any non-zero choice of the vector §6.
when this inequality is satisfied, it is said that G is negative definite

and is often indicated by

G <0

From the definition in Appendix D of the signums S,, we must have

81(61—603 > 0 or 61 = 80 (no first impulse)
82(62-61) > 0 or 62 = 0 {(no second impulse)
ss(ef—e3) > 0 or 67 = o¢ (no final impulse)
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These conditions constrain the possible choices of 66. For example if
83 = ef, 663 must satisfy 53663 < 0 from the above relationship. But
if Sz8z > 0, an allowed 665 cannot increase the payload. Thus 863 = 0.

Unless 661 = 0, there are problems if we must have 662 = §0 The

1
constraint 6; =6, really implies a change in the mode of the transfer.
Since the change in mode is covered by other initial conditions, the
iteration is terminated for this mode if 61 # 60, 62 = 61, and Szg2 < 0.
Otherwise if one of the 68's is specified as indicated above on the

right hand side, the corresponding §6 must be zero, unless of course,

an allowed 86 would satisfy the left hand inequality. Thus the condi-

tion g?ég = 0 can be satisfied either by

g, = 0 or 661 =0 (Slg1 < 0 and 61 = 60)
g, = 0 or 86, = 561(Szg2 < 0 and 0, = 91)
gz = 0 or 663 = 0 (53g3 > 0 and 63 = ef)

In appendix D, it is shown that if

g2=0

the primer at the time of the second impulse is equal to its threshold.
Thus, either the primer is equal to its threshold, or there is no
impulse. The equivalent condition applies if g; = 0. However, the
primer at the time of the first impulse is equal to its threshold only

if

g, = 0 and g, = 0
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Otherwise, if S,8, < 0, 6, = 61 and a variation in 91 requires an
equal variation in 62. Thus for computational purposes two different
modes are assumed. The first mode allows two initial and one final
impulse (no artificial constraints). The second mode does not allow
a first impulse. Only one initial and one final impulse are allowed.
Often each of these modes poséesses at least one local maximum, and
the optimum transfer is determined by a comparison of the respective

payloads.

As is typical with most numerical iterations, the initial condition
is important. As there are two assumed modes of operation, there are
two different sets of initial conditions used for the iterations.

These were determined to work successfully by some initial trials.
When both modes have local maxima, some artificial devices are often
necessary to force the iteration for one away from the other solution.
Thus when only one initial impulse is desired, a second impulse is not
allowed. The iteration then proceeds to the maximum. The initial

condition used for this mode is

6, = 90 (fixed)
and either

8, = .3 6g * 7 by

83= 76f+.36H

if the trajectory is going from an inner to an outer orbit or
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if going inbound. The variable SH corresponds to the eccentricity of
the pure high thrust coasting orbit. For transfers between elliptic

orbits, the initial condition of a pure low thrust transfer

is also useful. This often leads to a third local maximum.

When two initial impulses are desired, the simpler transfer pre-
sented in Appendix D provides an excellent initial condition. If es
corresponds to the eccentricity of the coasting orbit between the two
impulses of this simpler transfer, the initial conditions for the total

transfer are given by

The constraint 563 = 0 is used until gTég = 0 for a choice of 61 and
6, Then the constraint is removed and the iteration proceeds. Even
when this mode is optimal, the iteration tends to diverge to the mode
of one initial and one final impulse if the constraint is not used in

the initial portion of the iteration.

5.2 The numerical iteration

The numerical properties of the optimum payload expression have
been defined. Now a logic to choose among the possible iteration steps
is presented. The details of each of these iteration steps are in

Appendix E. Earlier a Taylor series of the payload was expressed
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about the optimum value. For the iteration a Taylor series expressed
about the present value of 8 is useful. Thus
= T 1 .7
m (8+86) = m (8) + g 68 + 7 88 G 88 +
where now the derivatives are evaluated at the present value of 6.

Three of the iteration steps evolve from this formulation. The gradient

step
s = .1 g (5.4)

will always increase the payload (if the step ' is small enough). The
scale factor of .1 was found to provide satisfactory performance much

of the time. A Néwton-Raphson (N-R) step
66 = -G " g (5.5)

will find the maximum of the payload if the function is quadratic. Near
the maximum, with both 6 and 86 small, the payload expression is suf-
ficiently quadratic that this step goes right to the maximum. If the
step

68 = d

has been taken, and found to be unacceptable, step size control is
exercised. The unsuccessful step is discarded, and a smaller step in

the same direction is taken. The parabolic step

§6 = k

[

where k, as derived in Appendix E, is
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g'd

[g'd - (m_(6+d) - m_(8)]

k=3 (5.7)

uses the information obtained from the unsuccessful step to estimate

the second derivative in the direction d. If the first parabolic step
size reduction is still not acceptable, k is computed again and another
smaller step is taken. The previous step d can be the result of a
gradient, N-R, or parabolic step. In order to ensure successful progress

to the optimum, k is constrained to the values

For some of the transfers, an adverse region was encountered for
which the previous methods did not provide satisfactéry convergence.
Such regions are best described as a ridge. The payload increases
only slightly in one (vector) direction, but decreases drastically

if a step is taken in other directions. The acceleration step
8§68 = 1.4 AB (5.8)

is used, where A8, a vector in the direction of the ridge, is defined
in Appendix E. If such a step increases the payload, another larger
step is taken in the same direction. The step size is so increased
and more steps taken in the direction A8 as long as the payload in-

creases.

Each of these steps are useful at various times in the search for
the optimal payload. The following logic used in the numerical itera-
tion was arrived upon after observing the progress of many trial

iterations. The gradient step is used if
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or

G is not negative definite

The N-R step is used if

gz < .03 and G < 0

A step is acceptable if the payload increases
m_(8+d) > m, _(8)

or if the payload does not decrease too much and the gradient does not

double back upon itself. These conditions are
mﬂ(g+g) > mﬂ(g) - .001

and

gl(e+d)g(8) > - .5g2(8)

Use the acceleration step if on a ridge as defined in Appendix E. The
iteration is successfully terminated if

_g_2<10

-8

Most iterations converged in less than ten steps if the mode being
tested is optimal. 1In a typical iteration, there will be three or four
gradient steps, possibly with parabolic step control. Then the itera-

tion terminates with one or two N-R steps. The acceleration step was

79




only used when two initial impulses were being sought and the usual

result was a change in the mode to drop the second impulse.

5.3 Some optimal coplanar coaxial transfers

The examples presented are the result of successful numerical
iterations. They were chosen bgcause they display the most interesting
properties of the many cases tried. Since it is impossible to test
all combinations of change in eccentricity and semi-major axis, the
conclusions reached by the study of these transfers do not exclude
other possibilities. However, no significant deviations from the
results presented here have been observed among the many other cases
which have been tried. For these numericai iterations, a mode para-
meter was used to specify the allowed timing and direction of the
impulses along with the appropriate iteration initial conditions.
Thus the signums S; and Ti were specified for each iteration and not
allowed to change. Additional input parameters used were Bz, pz, eg»
€er T and L BZ is the gravitational constant on the inner most
orbit. Bo is computed from B, depending upon the direction of the
transfer. All examples use the same value BZ\= 1.8 which corresponds
to the constant in a low earth orbit with a high thrust exhaust velo-
city of approximately 7500 ft./sec. Other transfers have been tried
for the range 1. < B, < 2. Transfers for the value of B, chosen best
demonstrate the widest variety of modes of transfer. The average
computational time required per transfer was 150 milliseconds on an
IBM 360/65 computer. A detailed description of the results of the
first example is given, followed by brief comments about the differences
and similarities of the other examples.

The variations in transfers are affected by a number of factors.
It was observed in Chapter 2 that increasing v and m, favor the low
thrust in different ways. In addition to increasing the payload, a
large T increases the final threshold, 63, less than the initial

threshold, 61. As 1 increases, the final impulses will either be

favored or decrease less than any initial
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impulses. Increasing m, will principally increase the final threshold,
thereby favoring initial impulses. In addition to these factors, the
dynamics of orbital transfers enter in. It is observed that the high
thrust is more effective for changing eccentricity than the low thrust.
Also the high thrust is often used closer to the center of attraction

where the gravity is stronger and the low thrust is less effective.

# Definition of the - Trajectories are shown for

Orbits

ag , T me...for these 7

— e e vbl (vbl 1)

aq 0 £ n)

e
1 4.0 .0 .0 3.6 .05 .2 3.6 5.0 7.0
2 .25 .0 .0 4.2 .001 2.6 3.4 5.0 6.2
3 4.0 .0 3 3.2 05 2.6 3.8 7.0 8.0
4 .25 .3 .0 3.8 .001 2.6 3.8 6.0 7.0
5 4.0 2 5 3.4 05 2.6 3.8 9.0 10.0
6 2.0 .0 .0 3.2 .001 2.2 2.8 3.4 4.2
7 6.61 0 0 3.2 .10 2.6 4.2 6.2 8.0
L_

Table 5.1 The examples used

Transfers between seven pairs of initial and final orbits are
considered. Table 5.1 lists the combinations considered, and for
brevity, each will be referred to by its number. The ratio of semi-
major axes, af/ao, and initial and final eccentricities, eq and eg,
define the transfer being considered. The payload is given in
graphical form versus the dimensionless time of flight, T, and for the

four values me* = 0, .05, .10, .15. In addition eight representations

*In the numerical iteration m,=.001 was used instead of zero. The pay-
load difference is less than .001 and only a slight change in mode

“was caused for small . Otherwise the results are essentially the same.
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of the optimal trajectories are given for each example. Four trajec-
tories (for the four values of me) are given for the fixed time of
flight in the table. These are indicated by a &4 on the payload plot.
For fixed m,, four more trajectories are given for the four values of
1 in the table. These examples are indicated by a e on the payload

plots.

A transfer between two coplanar circular orbits with a change in
radius Rf/RO'= 4, is used as example 1. The changes in payload are
given in Figure 5.1 for m, = .05. Since the time of flight is always
assumed greater than one orbital period, the high thrust payload is
not a function of t. The low thrust payload increases with T and the
mixed mode payload is greater than the others. Note the improvement
in payload for the combination even for times of flight for which the
low thrust mode is not competitive (t < 4). Figure 5.2 is a composite
plot of the payloads for the four values of m,. For all other examples
only the composite plot is given. The improvements over the pure high
thrust payload are greatest for larger m, and t. The improvements over

the pure low thrust payload are greatest for short times of flight.

Figures 5.3 and 5.4 are representations of the optimal trajectories
which would be followed for the indicated choice of 7 and mg. The
exact transfers are not given because the low thrust phases would be
all black if the actual number of orbits were shown. Also the small
periodic variations in orbital elements are not represented. These

plots are computed using the position vector

cos E - cos 26

sin 26 sin E

82




PAYLOAD

m

PAYLOAD

m

ki

0.40 1
§ i ;
MIXED THRU my = .05
L@ :
0.20]| o ——"’// i
: > t = ‘
////// {PURE HIGH THRUST
| ////// PURE LOW THRUST -
é i |
® i L i i .
1.00 2.00 3.00 4,08 s.00 ©.00 v.e8 ©.00

v = DIMENSIONLESS TIME

Figure 5.1. Payload vs. T for|transfer #1 (me = ,05)
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Figure 5.2 Payload vs. T for transfer #1 (variable me)
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which is expressed in non-rotating cartesian coordinates. During the
initial and final orbits, and the coasting half orbit between the
initial impulses, a and 8 are constant. During the low thrust spiral,
the optimal time history of a and 6 are used as given by equations

4.12 and 4.13. E is related to t by the solution of the transcendenfal

integral equation

t
E—esinE=f 311 dt
: 0 a“(t) .

For the plots, the number of orbital periods shown is the specified

parameter, n. Thus u for the integral is adjusted so that
E(tf) = 27n

The choice of n in the plots bears no relationship to the time of
flight. It was chosen so that the spiral would best show the variation
in orbital parameters for that transfer. The apse at which impulses

are applied are numbered according to the 6 which was changed by that
impulse. A final impulse is always labeled as #3. Two initial impulses
are labeled #1 and #2. If only one initial impulse is used, it is

labeled #2 since 62 was found numerically and 6, = 65-

Figure 5.3 represents four transfers for the same power plant
size, m, = .05, and the four different times of flight given in Table
5.1. The first (v = .2) has two initial impulses followed by a small
change during the low thrust spiral. It is nearly pure high thrust.
The second (t = 3.6) has two smaller initial impulses with a much larger

low thrust phase. As t increases, the mode changes. It is more
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Figure 5.3

Optimal trajectories

for transfer #1(vbl.

.05)
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T = 3.6)

Figure 5.4 Optimal trajectories for transfer #1(vbl. m

e,
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efficient to use only one initial impuise and add a final impulse.

The transfer with two initial impulses still has a local maximum for
this 7, but the payload is smaller. The final transfer is nearly pure
low thrust with only one small initial impulse. Figure 5.4 shows four
plots for the same T = 3.6. When no power plant is saved, initial and
final impulses can be used with equal efficiency relative to the low
thrust since 51 = 8;. For larger m,, final impulses must accelerate
more mass, and thus are not as efficient. Thus the first plot has one
initial and one final impulse with an intermediate low thrust spiral.
The remaining transfers have two initial and no final impulses, with

the low thrust phase increasingly impoftant as m, increases.

The second example is a transfer between the same orbits as the
first example, but in the opposite direction. The initial orbit is
the outer circle and the final orbit is the‘inner circle. The payload
-(Figure 5.5) and optimum transfers are identical to those of example
1 for the pure high thrust, pure low thrust and mixed thrust for me=0

only. Although the payload is virtually the same for increasing mg,

o.w_L_* S - 4- e -+ . -
, i i i
! ’ m
i i e
; .15
[an) a.
g - | e 10
S !
= .05
<C
e 0
[} !
i
= !
H ,
1.60 £.60 3.65 4.60 5.6 §.60 v.60 ko

T = DIMENSIONLESS TIME OF FLIGHT

Figure 5.5 Payload vs. © for transfer #2
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Figure 5.6 Optimal trajectories for transfer #2 (vbl m
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Figure 5.7 Optimal trajectories for transfer #2 (vb1 T, Mg =.001)
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the transfers look much different. Figure 5.6 shows four transfers
for v = 4.2. The transfer for m, = 0 would be the same, whether going
in, or out. There is one initial and one final impulse. As m, -
increases, the final impulse is dropped and the low thrust accomplishes
a larger share of the transfer. The transfer for m, = .05 does not
appear to use more low thrust, but there is a significant increase in
payload. With increasing m, it is clear for the other examples that
there is an increased amount of low thrust. Figure 5.7 shows the

variation in transfers for increasing times of flight. The observa-

tions for the first example also apply to this figure.

The third example is between an inﬁer circular orbit and an outer
orbit with a moderate eccentricity (e = .3). The modes of transfer
change as the dynamics of the optimal control problem and the transfer
itself vary in importance. The changes in mode can be observed by the
change in the slope of the payload curve in Figure 5.8. The most
noticeable inflections are for m, = 0. and t ®* 6.8, m, = .05 and
T % 7.8, and m, = .15 and t ® 2.2. The changés in the transfers for
increasing m, as shown in Figure 5.9 are as before. As m, increases,

first the final impulse is dropped, and then the second impulse is

0.60

: . e
- .15
™
210
.05
= 0
[as]
o}
po.
=L
[~
fl
=3

2.0

¢ = DIMENSIONLESS TIME OF FLIGHT

Figure 5.8 Payload vs. t for transfer #3
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Figure 5.9 Optimal trajectories for transfer #3 (vb1 Mes T = 3.2)
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Figure 5.10 Optimal trajectories for transfer #3 (vbl r, mg
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dropped. The trajectories for different t1's shown in Figure 5.10 show
some dramatic changes in mode. For short times of flight, thére are

the usual two initial impulses followed by a low thrust spiral. Then
the second impulse is no longer used and a small final impulse is added.
The final impulse has been dropped for v = 7. For tv = 8., the mode
changes. One final impulse is used to increase the eccentricity to its

final value after an initial low thrust spiral at low eccentricity.

The fourth example is the inbound version of the third example.
Similar to the relationship between example 1 and 2, the payload and
transfers are identical for the pure high thrust, pure low thrust, and
mixed thrust for m, = 0. However for larger My there is a difference
in the payload between examples 3 and 4. For smaller T, the outbound
transfers have a larger payload than the inbound transfers. Although
two initial impulses are used for both, going outbound the impulses
occur on the inner portion of the transfer, rather than the outer
portion. Thus the low thrust phase is more effective since it is
used in the region of weaker gravitational force. For larger t, the

inbound transfer has a higher payload since the single impulse which

o.e0 m
g . . ; ' . . . . . . B e
.15
.10
.05
2 0.40
pad 0
]
S
= 4
o.
u
F -
= 0.20]
[ “ : i . i ; . . —
) 1.0 2.0 3.0 4.0 5.0 6.0 ) 8.0 8.0 10.0 11.0 12.0

v = DIMENSIONLESS TIME OF FLIGHT
Figure 5.11 Payload vs. t for transfer #4
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Figure 5.12 Optimal trajectories for transfer #4(vbl m_,
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Figure 5.13 Optimal trajectories for transfer #4 {vbl T, my = 0)
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changes the eccentricity occurs at the initial, rather than the final
time. For the larger m,, a single impulse has a lower cost at the
initial time. The variations in the transfer for increasing m, shown
in Figure 5.12 are similar in nature to those of example 2 in Figure
5.6. The variable 7 plots shown in Figure 5.13 are similar to those
of Figure 5.10, but with the roles of initial and final impulses
reversed.

To demonstrate the similarity of the results for some other
transfers, the remaining three examples bear a relationship to the
earlier examples. The fifth example has the same chdange in eccentricity
and semi-major axis as the third and fourth examples. However the
initial eccentricity is different. The pure ldw thrust payload for
examples 3, 4, and 5 are essentially the same. The high thrust
payload is higher for the fifth example. For short times of flight,
the improvement over the pure high thrust payload is the same for
examples 3 and 5. However for larger t the improvement over the pure

low thrust reflects the greater efficiency of the high thrust at the

G.€n

+ FEEII e ST TR EToF I

, : Mg

= PAYLOAD

m

v = DIMENSIONLESS TIME OF FLIGHT

Figure 5.14 Payload vs. T for transfer #5



Figure 5.15 Optimal trajectories for transfer #5(vbl m,, v = 3.4)
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higher eccentricity. Figures 5.15 and 5.16 represent the optimal
trajectories for variable 7 and variable m, . Their variations are
similar to those of example 3. Examples 6 and 7 are similar to the
first example. They are transfers between coplanar circular orbits
with different changes in radius. The relative improvements in payload
occur at different 1, but the variations in the transfer are quite
similar. The mode of transfer for the combination of propulsion systems
has been defined by the number and magnitude of the impulses. The |
improvement in payload is sufficient to indicate consideration of the
combination of propulsion systems on any transfer for which low thrust

can be considered.
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Figure 5.17 Payload vs T for transfer #E
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Figure 5.18 Optimal trajectories for transfer #6 (vbl Mgs T = 3.2)
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Figure 5.19 Optimal trajectories for transfer #6 (vbl. =, m, = 0)
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Figure 5,22 Optimal trajectories for transfer #7 (vbl T, mg = .10)
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Chapter 6

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Significant improvements in payload have been obtained for changes
in spacecraft trajectories using the optimal combination of ideal
velocity and power limited engines. A payload expression was developed
which considers the retention of a portion, or all, of the power supply
used for the low thrust propulsion. Retaining the power supply mass,
m,, results in an improvement in payload, regardless of the time of
flight. The improvement in payload is typically greater than 80% of
m, for times of flight such that the two modes are independently com-
petitive. The optimal control problem for the combination of engines
is much more complex than that for either mode used independently.

For transfers between coplanar coaxial ellipses in a strong gravita-
tional field, the dynamics of the transfer have been analytically
solved. The resultant payload expression has been numerically maxi-
mized by the optimum choice of the remaining free parameters for some
specific examples. Similar improvements in payload were found for
changes in velocity in field free space. Large enough payload improve-
ments have been obtained to suggest consideration of the combination

if it is possible to use a low thrust propulsion system at all.

Some observations made in Chapter 2 regarding the variation in
the trajectories due to variations in m, and t have been verified for
the examples studied. For short times of flight, T, the mixed thrust
payload will always be greater than the high thrust payload if a non-
zero power plant, m, is desired. If 1 is very small, the improvement
is insignificant since the low thrust, which must operate at a low

acceleration in order to be efficient, does not have enough time to




affect the transfer. However, the improvements in payload grow rapidly
as T increases. For intermediate v, when the high and low thrust are
independently competitive, the improvement for the combination is
greatest. Increasing m, will increase the payload by 80% to 100% of
the increment in m, . Thus if the two modes are competitive, and a
power supply is desired, it is added '"free" payload if the combination
is used. For moderately large t, there will still be some improvement
over pure low thrust. But for large v, the low thrust efficiency is

so high that high thrust will be used only for the initial insertion

into orbit.

The timing of the high thrust impulses define the mode or
character of coplanar coaxial transfers. There were at most two
initial impulses (at the opposite apses of a coasting orbit) and one
final impulse. Between these high thrust phases, there is a low
thrust spiral phase. Although transfers with three impulses were
found, typically either two initial and no final, one initial and
one final, only one initial, or only one final impulse were used. The
numerical initial conditions reflecting these different possible modes
frequently resulted in several local maxima. The timing of the
impulses is dictated by the interrelationship of the dynamics of the
transfer itself and of the optimal control problem (as defined by the
thresholds, 8, and the primer). Usually the timing of the impulses
was dictated by the relative level of the threshold, while the improve-

ments in payload were affected by the dynamics of the transfer.

For a given transfer between two orbits, the determination of the
timing of the impulses is dominated by the optimal control parameters
P, 61, and 63. These are affected by the time of flight, t, and the
desired power supply mass, m, - Due to the lower requiredvacceleration

level, the low thrust cost will decrease for small increases in T,
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even as the low thrust phase accomplishes more of the transfer. This
is reflected in the increase in both the initial and final thresholds.
However, since the low thrust integral, Ll’ is smaller, the increase in
63 is not as large as in 61. The final impulse loses efficiency less
rapidly than the initial impulses. These effects are seen in the

plots of trajectories for variable 1. The mode typically changes from
two initial impulses to one initial and one final impulse, then to

only one initial impulse. Changes in the desired power plant size,

Mg also have a large effect upon the relative sizes of the impulses.
If m, is smaller than the optimum power plant mass, mp, 63 will increase
much more than 61 (61 increases due to the increase in J1 as the final
impulse diminishes). Thus final impulses will diminish much more than
initial impulses.  If there is no final impulse, the payload increases
by the amount of the increase in m, and the transfer modes are the
same. However, if m, is greater than mp, both 61 and 63 will increase.
The low thrust power supply is now specified at a higher level than

the optimum, and the same acceleration can be achieved by a lower
exhaust velocity. These effects can be seen in the plots of the
trajectories for variable mg . First the final impulse is dropped,

then the initial impulses diminish as the low thrust accomplishes more

of the transfer.

The dynamics of the transfer have a larger effect upon the payload
than upon the timing of the impulses. Comparing the payloads for like
transfers it is observed that high thrust is more efficient (higher
payload) for use in the stronger portion of the gravitational field, for
changing eccentricity, or operation at higher eccentricity. The low
thrust is more efficient at lower eccentricities and in the weaker
portion of the gravitational field. Also, there are cases for which

the mode changes due to the relative dominance of these effects. For
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transfers to a final elliptic orbit at a large 7, a final impulse is

used to change the ecentricity, even for moderate m, .

The improvements obtained for this class of transfers are suffi-
cient to warrant further investigations into the use of the combina-
tion of propulsion systems. There are basically three areas for
further study. Within the engine and strong gravity assumptions used
here, other classes of orbital transfers remain to be studied. Removing
the assumptions on the strength of the gravitational field would allow
an extension of thisAproblem formulation to interplanetary transfers.
Before applying these results to a specific mission, the non-spherical
character of the earth's gravitational field must be considered and
the ideal engine assumptions must be dropped. Real engines involve
the additional masses of the engine, structure and fuel tanks, along

with non-ideal operating capabilities.

Insertion of a communications satellite into synchronous orbit is
an appropriate application of the theory presented here. However, for
launches from the United States, the inclination of the orbit must also
be changed. Transfers involving a change in all orbital parameters
(except position on the orbit) should also be considered. As more
complicated transfers are tried, the completeness of the solution for
the low thrust phase is no longer possible. Although analytic
solutions exist for general low thrust transfers, the boundary condi-
tions on the costate must be numerically obtained. Also the timing of
the impulses during the orbit will not be specified for general
transfers as it is for the class considered here. Within the assump-
tion of a strong gravitational field, rendezvous is not a particularly
interesting class of transfers. Over the many orbits of the spiral
which are required, a small perturbation in each orbit is all that is
required to achieve rendezvous. Using the combination of propulsion

modes, similar payload improvements should be possible for these

108




other classes of transfers. An initial choice on the timing of
impulses for other classes of transfers should be motivated by

the results found here.
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Appendix A
NOTATIONAL CONVENTIONS AND NOMENCLATURE

The variables are divided into categories appropriate to their
apblication for a description of their roles. The notational conventions
used are given first, followed by the masses, state variables, defining
constants, and the controls. The equation number of the defining
equation(s) or the first occurence of each variable is given in
parentheses after each description. Since each chapter of derivations
has a related appendix, many variables have two equation numbers

indicated for the respective first occurrences,.

Notational conventions

The vector and other notations are explained using x as a dummy

variable. The discussion is concerned with how any such variable is

treated.
x = underbar, to indicate that the variable is a matrix. An
n x 1 matrix is often called a vector
ET = use of the transpose of the matrix

yA T

x = x'x. The notation for the square of the vector magnitude
is shortened
T .
x| = +‘J§'5 The scalar magnitude of a vector
%; = the vector of first derivatives with respect to each com-
ponent of x
X = over dot. One (two) overdot indicates the first (second)

time derivative of the variable in an inertially fixed

coordinate system.
Some subscripts are used which are of general application

at the initial time of the transfer

Hh o
1 i}

at the final time of the transfer
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1 = final time (only for Jl’ Kl’ Ll’ and Ql)

Nomenclature
All masses are dimensionless, having been normalized by the initial

mass of the spacecraft

m = payload. This is the mass remaining after the transfer
is completed and any undesired power plant has been
dropped (2.3, B.11)

m - the power plant mass desired at the end of the transfer
(a specified parameter)

mp = optimal power plant size for any transfer (2.4, B.10)

m = fuel flow rate (B.6)

Some integrals of the controls are used to describe the payload

J(t) = the change in mass (a ratio) of the spacecraft due to
any final (AS) controls (B.9)

K(t) = the change in mass (a ratio) of the spacecraft due to
any other (él) high thrust controls (B.7)

Lz(t) = the integral of the low thrust acceleration which deter-

mines the change in mass (B.8)

By definition, the final value on these three variables is indicated
by a subscript 1.
The current position or orbit of a spacecraft is given in general

by a state vector x which depends upon the problem statement. When

X = the position vector (2.10., 3.2)

R(x) = the arbitrary position dependent gravitational acceleration
(2.10)

g = the gravitational acceleration in position independent

space (3.1)
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When

1>

Subscripts -

[K=2]

o= e fo

the dimensionless change in velocity (3.2)

n

the dimensionless change in position (3.2)

a vector of orbital elements (4.1)

semi-major axis of the orbit

% cos le (by definition)

]

eccentricity of the orbit

on the orbital elements are given by equations D.7

the vector of the unspecified 8's (5.1, D.18)

= the deviation from the optimum, or a step taken trying

to reach the optimum. The four possible steps are (5.4,

5.5, 5.6, 5.8)
= the gradient vector of the payload (5.2, D.17)

= the second derivative matrix of the payload (5.3, D.21)

= parabolic step sizing parameter (5.7)

a(l-e cos E) = the radius on an orbit

Two other classical elements are used to indicate the time variation

£
E
B

Two signum

T

(x,t

true anomaly (4.4)

eccentric anomaly (4.3)
Y=the matrix of coefficients which relate the control

accelerations to the derivatives of x. (4.2)
functions are used for convenience of notation

= - cos f when £ =0, or £ = 71 (4.8)

TO’Tf= define the apses at which impulses are applied (D.8, D.9)

o

= Ti signum (Pi) (D.16)
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and two functions of the eccentricity are used

* (5

= J > (D.5)
i_Te

= —r (D.6)

Some constants are used to define the transfers which are considered

= the initial time (usually tO = 0)

= the final time. If ty = 0, te is the time of flight

= the reciprocal specific power of the low thrust power

supply (2.2, B.3)
= the high thrust rocket exhaust velocity (2.1, B.5)

= the gravitational constant (D.4)

= 5 , a dimensionless gravitational constant (D.1)

4c a;

t
= ~£2 = dimensionless time of flight (3.3, 4.11, D.2)
ac

[a
= Eg = dimensionless change in semi-major axis (D.3)
f

= \/% (63-62) to indicate the low thrust change in

eccentricity (D.10)

a
= \/EE to indicate the low thrust change in semi-major
3

axis (D.11)

The optimal controls are described in terms of

|>

ot
ot
[

it

the primer vector, the velocity costate (2.11, 4.5)

the costate vector appropriate to the problem formulation

the non-zero component of the primer at an apse (4.9)




p' = the non-zero component of the first derivative of the
primer at an apse (4.10)
- C,D = two constants which define the primer. Either (4.6,

4.7) or (4.14, 4.15)

When the state is a vector of orbital elements

A1 = costate corresponding to the averaged semi-major axis
(D.13)
Ay = costate corresponding to the averaged 6 (D.12)

AlO’AZO = the initial conditions on Al, Al (D.14, D.15)

the costates corresponding to the mass flow functions

Agargen
J, K, L. (B.12, B.13, B.14)

The optimal accelerations are

él = a high thrust acceleration used at any time except the
final time (2.13, B.5)

él = the low thrust acceleration used during the entire
mission (2.12, B.4)

és = a high thrust acceleration used only at the final time

after dropping any undesired power plant (2.14, B.5)

These accelerations are determined by the primer using the terms:

Q(t) = a coefficient which related 52 to p (2.15, B.17)
61(t) = the threshold to determine use of 51(2.16, B.15)
63 = the threshold to determine use of 53 (2.17, B.16)

We sometimes use

8 = Q;8; (3.4, D.19)

A

8 = Q65 (3.5, D.20)
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and for transfers in field free space

—

[«>]

LIOU
WOEV_

Vi

V2

1

]

a vector which partially defines 52 (3.6, C.1)

a vector which partially defines ﬁl (3.7, €C.1)

= the dimensionless magnitude of an initial impulse

(3.8, C.2)

the dimensionless magnitude of a final impulse

(3.9, C.3)



Appendix B

THE GENERAL OPTIMIZATION PROBLEM

The analytic steps involved in the maximization of payload for
transfers in an arbitrary gravitational field are presented in this
appendix. Chapters 1 and 2 outline the ideal engine assumptions
which form the basis of the derivations. The mass flow differential
equations are derived from basic physics and then analytically solved.
The equations for propulsive power required by each engine and con-
servation of momentum will be used. The solution for the final payload
is found in terms of some special‘functions. From these, equivalent,
but simpler, differential equations can be stated for the payload. Then
the general optimal control problem for the maximization of payload is
formulated and a partial solution obtained to yield a simplified set of

necessary conditions.

B.1 Performance Functions for Ideal Engines

Two basic equations define the operating characteristics of both
velocity and power limited engines. The conservation of momentum for

any engine gives

mc; = —mIAiI (B.1)

and the propulsive power required to accelerate the propellant is
- _ 1= 2
Power = Fmcy (B.2)
where

m{t) = the current spacecraft mass (expressed as a fraction

of the initial mass
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[¢]
i

the rocket exhaust velocity for a particular engine

the acceleration vector for the spacecraft as a result

of the effect of a particular engine

There are also the restrictions

e
IA
[om)

c; > 0
Three distinct engines are assumed for this formulation. Engine
2 is assumed to be limited by the power supply mass, which has a power

output proportional to its mass. Thus

Power = é m, (B.3)
where

mp = the power plant mass

a = the reciprocal specific power of the power supply

Although fixed for a mission, the power plant size remains to be
determined. For this fixed power, equations B.1 and B.Z can be

combined to eliminate the exhaust velocity

- 2 Power

C
Y omlA,l

to give the fuel flow rate

Py
s
[0}



o= - g (m A (B.4)
P

Since the propulsive power is fixed, and the accelerations, é&, are to
be optimally chosen to maximize the payload, the exhaust velocity, c,
is variable, depending upon é&'

It is assumed that a portion (or all) of mp can be dropped at the

final time t tf

mP = -(mp-me)u(tf)
where

m, = power plant retained
m, < mp
ﬁ(tf) = unit impulse at t = tg
u(tf) = unit step at t = te

i 1 t > tg

0 t < tf

Engines 1 and 3 have identical characteristics, but are used at
different times. These engines are assumed to be limited by their

exhaust velocity

c;p =c¢z<c
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For these engines, the mass flow is obviously minimized if the exhaust

velocity is the maximum c. Thus

O b

ﬁl1 = - m‘éli

(B.5)
[ 1
m. = - < mlégl

Engine 1 can be used at any time during the flight except the final
time. Engine.3 can only be used at the final time, after a portion

of the power supply, if any, has been discarded.

The total mass flow differential eqdation is given by the sum of

the individual elements
M= - L m(A ] #[Ag[)-(m.-m) U (tp)- -2 m?A,° (B.6)
c =1 =3 P e £ Zmp =2

Before using 53 or dropping any of the power plant, this differential

equation is solved by

2
- K™(t)
m(t) = — T
v 1+ — L°(t)
m
p
where
K(t) = [ 1 ftlA | dt] (B.7)
exp 76 0 A4 .
K, = K(tg)
t
HORE YA NOFWIORE (5.8)
L, = L(tg)
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Define

L(t) > 0

After dropping the power plant we have the solution

2
K
m(t) = 34(8) | —— - (m,-m)
1+ =— L,
p
where
J(t) = exp { %—- ft |A4] dt] (B.9)
¢ Y
Jy o= J(tg)

Thus the explicit solution for the total mass differential equation

is given by

2

= 12 K™ (t)

= J - -

m(t) (t) 1337—37f§§ (mp me)u(tf)
P

The payload is here assumed to be equal to the final mass

2

!

m_ = Ji1 I:—I:fz—f - mp+me
mp 1

which is a maximum over m_ for

m_ = Ll(K

-L
P

(B.10)
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If the desired power plant size m, is larger than the optimum mp, we
are not free to choose the power plant mass. For this case the low

thrust power supply will have the size m, . The notation mp will be
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retained so that

m,

o the optimum power plant size

m

e the desired power plant size

Thus there are two expressions for payload dependent upon the desired

power supply size

2 .
Jl [(Kl-Ll)2 + me] if m, < mp
m = S22 (B.11)
1 71 .
T if m, > mp
1+ ﬁ; Ll

J, K, and L can be described by the differential equations

s 1

J = - 7c JIA3‘

) 1

K= -5 Kléll
2

s o K 2

L=7 &

with the boundary conditions

J(0)

L}
—

K(0)

L]
—

L(0)

n
o

Thus the maximization of the payload m subject to these differential
equations is entirely equivalent to the maximization of the final mass,

subject to the previously given mass flow differential equations.
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B.2 A partial solution of the general payload optimization problem

A general optimal controi problem for the maximization of payload
for transfers in an arbitrary position dependent gravitational field
is presented and partially solved. The payload with its associated
differential equations as'derived in the previous section is maximized.
In addition to the control accelerations, the spacecraft is assumed
to have a position dependent acceleration. A partial solution is
obtained for ease of application to problems with specific gravita-
tional fields. Two basic forms of the vehicle differential equations

are considered.

The payload m_ as given by

2 2 .
Iy [(Kl—Ll) +me] if m, < mp
m =
m Jl2K12
TT L 2 1 mg 2 my
1+]§K1

with

mp = Ll(K1 - Ll)

is to be maximized subject to the differential equation constraints

ko= RGO+ A+ A+ A
= - e Ilagl
k= - 7z KlA|
L=%’]I§Eézz
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with the boundary conditions

x(tg) = xg x(tg) = X
x(tg) = Xg i(tf) = gf
I(ty) = 1 K(ty) = 1
L(ty) = 0" tg is fixed

and by definition

[
i

1 = Jth) Kl = K(tf)

[
|

1= L(tf)

The remainder of this section is a straightforward application of
classical optimal control techniques. The differential equation con-
straints are adjoined to the cost function integral (none here) to
form the Hamiltonian. The costate differential equations and boundary
conditions are then presented and partially solved. The resultant form
of the Hamiltonian is then maximized by specification of the control

accelerations A;.

Using A with an appropriate subscript for the costate variables,

the Hamiltonian is given by

' 2
_ 5T 3T 1 1 a K 2
Ho= AR + Ap+A+AD A X-A g 22 T|Az]-Ag 52 KIA 93] 7 1 A
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The costate differential equations are found from H

. oH _ .1

Ay= - 53 =* 7c A;lAs]

s _ . eH _ 1 _a K, 2
A= ap st MMl I M T A
s _a KX, o2

L 5L '4_;2'—2. L

and after a couple of substitutions

i (32,

The costate A is actually the costate corresponding to the velocity,

x, if only first derivatives were used.

Since the boundary conditions on x are completely specified, the
boundary conditions on A are free to be chosen (so that x,, X, gﬂ,and
éf are satisfied). The other costate boundary conditions are found
from the payload m.. The f subscripts indicate a final condition on

the variable.

\ ) am1r } ZmTT
Jf EJ1 J1

2 .
om ZJ1 (Kl-Ll) if m, < mp
Ap = ompe =
ke %1 ) oam _
Kl—- if mez_mp
-23.%(K,-L) ifm_ <m
am 1 171 e —'p
A = 7=
Lg 0L m L
- E_l__z_. if m_>m
Mo * L1 cT P




The differential equations for AJ, XK’ and AL can all be solved
explicitly. In terms of the solutiomns J(t), K(t), and L{t) of the

previous section, we have

OISO (B.12)
A
2 Le
K(EA(t) = Kprp + Lia, = L2(e) = (B.13)
f £ 1
2 2 2 .
20,4 (K, L) %1+ %; L50)] ifmg <my
2m“ 1 2
—1T [1+ — L%(t)] ifm,_>m
1+ — le Me e—- P
e
A
KL(t) . Lf
e T (B.14)
J,? .
-2 EI_"(KI-Ll) if m, < mp
2m1T
- ifm, >m
me+L12 e—- P

In terms of these solutions

_ T STs ) 1, 2
H= A" (R(X) + Aj+A +AL) + A'x 51(t)|§1| 63'53" 720 Ay

where
2 2 1 2 .
J1 (K1~L1) [1+ ﬁ; L®(1t)] if my < mp
5,(t) = ¢ (B.15)
T e L1206y ifm. > m
1+ %_ Ll2 m, e — p

e
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=1m
65 = Mo (B.16)
L .
1 if my < m
I (Kg-Ly)
1
Q(t) = —
0‘Kz(t) (B.17)
Mg ¥ le
ifm >m
m e ="p
The Hamiltonian is maximized by the controls
A, = Q) A(D)
© A if Al = 6,0t)
A=
0 if Al < 8§, (1)
® 2 if [A] = 84
Az = ,
0 if Al < 85

In summary the Hamiltonian, state and costate equations are

H=(]A]-81 (D) A, [+ (IA]-65) A5+ F 2% TRx)+3Tx

EE
[}

R(x) + i(Q(t)”.{\.ﬂ * '53”

T

i _ (:i(i)) N T

The costate vector A as defined for this problem is often called

the primer vector p in the classical literature. From the homogeneous
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differential equation in p()) it is clear that p and its first two
derivatives are continuous when 51 or A; are impulsively applied. This
property will be used in later sections. In general the primer is the
velocity costate, the coefficient of the acceleration vector in the

Hamiltonian.

The limits of low thrust for this mixed thrust formulation is
easily given. When A is scaled such that éz provides an adequate

acceleration to accomplish the entire transfer and
IA(e)] < 8;(t)
IA(te)]| < 84

no high thrust will be used.

The 1limit of pure high thrust occurs at a discontinuity in the
equations due to the manner in which the low thrust cost integral is
defined. When no low thrust is used Ay = Q1 =L = mp = 0, There
are difficulties in the %— Lz(t) term in 61(t) which can be easily
circumvented by never usigg a zero m,. If m, is very small (.001 will
do) there will be a negligible increment in the payload and some low
thrust will always be used. Analytically, the nature of the high
thrust limit is easily shown. The low thrust cost

te
L2 = %‘-fo K2 (t)A, 2 (t)dt

can be rewritten using

A, = QUEIA(E)
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and the expression for Q when m, = 0 < mp to give

L 2
2 1 2
L% 2 e 1
1 Z 1
(Kl‘Ll)
where
te a2(t)
g | o
ZocJ1 0 K (t)

Note that I1 can take on a non-zero value, even if no low thrust is

used!

Solving this equation for L we get

0 <L <K
We must have

Ly =X -1
If

I1 > K1
then

L1 =0

which implies that Q, éz and mp are all zero. Thus pure high thrust
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occurs at a discontinuity in the equations which evolve from this

formulation of the problem.
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Appendix C

FIELD FREE SPACE TRANSFERS

The necessary conditions for arbitrary transfers in field free
space are solved and applied to the specific problem of a change in
position. The problem of a change in velocity is also solved. These

problems are defined, and the results summarized in Chapter 3.

C..1 General transfers

The dynamic equations of motion for the low thrust phase are
analytically determined for arbitrary, fixed time transfers in field
free space. Since initial and final impulses are in the direction of
the low thrust acceleration which is known, only their magnitudes,
along with the boundary conditions on the primer, remain to be deter-
mined. As shown in Chapter 3, the primer and thus the low thrust
acceleration for this problem are linear functions of time. A possible
choice for A, which satisfies this constraint is

. C
Ay = %

t t
1-2) + ( C.1

£

where by definition

u,, W, are positive dimensionless constants which remain to
be determined

u, W are unit vectors which remain to be determined

Optimal impulses are in the direction of the primer (and thus

A
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A first impulse will result in the change in velocity
= (€.2)
Vv, = ¢ v

where vy 2 0 is the dimensionless magnitude of the first velocity
change. Similarly, the change in velocity due to a final impulse in

the direction of é&(tf) is

Y2

= C VZY- » (C‘s)
where v, > 0 is the dimensionless magnitude of the final velocity
change. Intermediate impulses are not allowed. The optimality of
this assumption must be verified for any specific transfer by comparing

lég(t)! with &, (t).

The change in velocity during the low thrust phase is easily
obtained by integrating 52. The initial condition is Xl and the final
condition is ¢ V - V,, so that after the final impulse we have the
desired final velocity. These are conditions on the boundaries of the

low thrust phase, not the total transfer.

t K
v+ S e

t
= C [V u * u,u (— -
1- 0= te

"

x(t)

o] b
N
g
+
o
=
o
[ES
——.

At the end of the low thrust phase

upu + 7 wgy)

N b

x(tg) = c(V-v,w) = c[(vy+

or
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Vo=u(v, +gug) ¢ wlv, + 7 w,) (c.4)

The position integral is also easily obtained

t‘
0 +f k() at
0

x(t)

2 3 3
_ 1t° 1t 1 t
‘°V13t+°“0‘—‘(7“’tf E“z)*ﬁcwo‘i—z
t t
£ £
At the final time
cte 1 1
X(tg) = == 5= ¢ tellvy + 3 uplu * g wo¥l (€.5)

The solutions for Uy and Wow are found by satisfying equations

C.4 and C.5.
Vo, e
- 1 1 2
Ugl 3 - (7‘* i, y
- 1
det
1. V1 1 Vl) 1
Wo¥ [_“('g*ﬁg) (7*%_ TS
where
v v vV, V
o= (e d(2e2) 2 2)
0 0 0 0

The magnitudes Uy and W, are determined by the solution of

2 1 [1 T (1 Vz) 53 1 (
u,” = VV+ | 5+ — e
0 dot? L36 == 7 ' w ) 37
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The only undetermined parameters are v, and v,, the dimensionless
magnitudes of the two impulses. The two conditions that the primer
be equal to the threshold at the times of each impulse are used to
determine v, and v,. The thresholds are in terms of the integrals
J

Kl’ and Ll' By its definition, the integral L1 as given by

1’

t
ff 2 2
L= g ) Kwato a

is found to be

The integrals K, and Jy are simple expressions due to the definitions

of vy and v,

-~
]
|

<

1
1 exp (- >

.y
n

1 exp (- 1

)
<
|58
i

At the initial time

Jot
w
W



- C =
14,1 = £, % = &
and at the final time

= c =
A ()] = =Wy = 52
f
Thus vy and v, are determined by the conditions at the times of the

impulses. Either

| A

Yo Yo
T = oc GA or (v1 = 0 and —- < oc SA)

and

i} o
T T

il

ac § or (v2 = 0 and

|A

ac 6B)

These are four conditions which can be used to determine the four
parameters uy, Wg, Vi, and V. These results are summarized in

Chapter 3.

C.2 Change in position

The specialization of the previous general transfer to one which
changes only position (V = 0) has a complete analytic solution if me=0.
With V = 0, the coordinates can be chosen so that the problem involves

only a single dimension. Thus let

The pure high thrust solution applies an initial impulse in the desired
direction and an equal and opposite final impulse at the final position

such that V = 0. The magnitude of these velocity changes depends upon




the time of flight. The pure low thrust solution is shown in Figure

C.1. The primer is a linear function of time. Since the integral

Figure C.1 Relationship of the primer to the thresholds

of Amust be zero for V = 0, the initial and final values of lézl must
be equal as shown. For the mixed thrust, when m, = 0, the two
thresholds 8, and §; are equal. Thus if IAQ(O)[ = 8,, then [Ag(tf)1=§B
and vice-versa. If both impulses are used, they must be equal in
magnitude, and in opposite directions. For this case, it is not
possible to use only one impulse. Any impulse must be in the direction
of the primer, and A2 can not have a negative (positive) integral to
balance an initial positive (negative) impulse since IAz(tf)|<lAz(0)|.

Thus for the mixed thrust with 8y = 8p, we must have

-—IIC
(=]

Yo
T
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Since

where

det

I

[
——
:;ll—-'

+
(% 1
——
&

[

+

|5
g

+

|
€|N<
e

we must also have
Vi T V2
After some algebra we get
_s _ 1
Vit T 8%
Using these values we get

+ 1

Ie
it

for the vector directions which define the direction of the high and

low thrust controls. Using these values we get

1Yo

o4
=
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Applying the condition at the threshold

u u u
0 g Y
L = acs, = (1 )

we get

and

The solution uy = 0 corresponds to pure high thrust which will be

discussed later. To complete the definition of the problenm

- .S L
VizveErrl s

and the mixed thrust payload is

mﬂ=gexp[‘2(%+l ‘/gﬂ

The constants uqy and v, must be positive by their definition. u, is

positive if

and vy is positive if
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s, 2
Tf_é(l*‘,—[ﬁ)

If 1 < 6, pure high thrust should be used (u, = 0). The resultant
2 0

payload is

= -2 £
m. = exp { 2 T)

If 1 >6 (1 + %Jz, pure low thrust should be used. The resultant pay-

load is determined by

_ 3
up = 6 7
and
El=\/§§
K1 T T

Since we are not matching a threshold condition, the pure low thrust

payload can be given for all m,

=
o
4
—————
[y
i
Alon]
Alw
e
[
[
ph
El
o
IA
=
a=1

[
Fh
E
o
| A~
,US

where

This completes the description of the optimal payloads for a change in
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position in field free space, since other analytic solutions are

not possible.

C.3 Change in velocity

The solution is found for a change in velocity in field free space
as defined in Chapter 3. Since, by assumption, the dimensionless change
in velocity, V, is positive, the acceleration Az will also be positive.

Let

where u is a positive dimensionless constant which must be determined.
The change in velocity, V, due to an initial impulse is optimally in

the direction of Al‘ Let

V1 =cvy

where v, > 0 is the dimensionless magnitude of the first (and only)
high thrust velocity change. Integrating the equation of motion for the

state we get

t
x(t) = Vv, +[ A, (t)dt
0

t
=c (v, + u —
( 1 tf)
At the final time

é(tf) =cV=c (v1 + u)

Thus vy is specified in terms of V and u




The necessary condition on Ay at the time of the impulse determines u.

We must have

-1 u _
Ay =Gt ™ %A
or
v1 =0 and AZ < SA
where as before
L L
1 1 ) .
-]q(l‘ K-]:-) lf meimp
21
Sp = &c
Me
ifm >
Klz e = Tp

and

m_ = L1 (Kl - L

p 1)

Some integrals of the controls are necessary for the specification of

the thresholds, Because of the definition of vy
K, = exp ( A v.)
1 PR
Also

t
£
2 _ ¢ 2 2 -
L, —7/' KA(e) AS(e) a6 = -kl
0




Thus

_u

Nrzs

o-fq] Hr

The optimal controls can now be completely determined. If m, < m

A'Q =§, if

P’
A

u

=)

which is solved to give

u.
T

u =\/21 - 2
and then
v1=V-\/2'r + 2

These equations are only valid when the constraints u > 0, vy 2 0, and

m, < mp are satisfied by

and

meiJg (1 -J—%-)exp (—V+ﬁ—2)

If t < 2, the solution u = 0 must be used to match the threshold. This

possibility is discussed later.
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The payload for this case is

m. = m, + exp ( -V + JZT - 2 )

The second expression for the mixed thrust payload is obtained for

mg, > mp when Al = GA as determined by

_m__e__f
Ky

Ale

and as before
vy = V-u
Since
K2 = (- )
1 exp vy

it must satisfy the transcendental equation

Me
K1 = exp (- V+1 ——7) (C.6)

which must be solved numerically. In terms of Kl

E]

e

r
I
[N
=

The payload expression
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where K1 is the solution of equation C.6, is applicable when u >0,

vy 2 0 (XKy<1), and m, > m  as expressed by the relations

p

m, >0
i
Mg 2 7
2 (\’-'25- 1) exp (-V +4f21 - 2) if © > 2
T .
mei
0 if 1 <2

Outside the bounds of applicability of the mixed thrust payload expres-
sions, either pure high, or pure low thrust will be used. Use pure low

thrust when

or

for which

and the pure low thrust payload is

m+(1-V—)2 ifm, <m
e \[E."—r e — p
m, =
'l—l-l——-z ifme?_mp
* ZrmeV




where

m:.ll__(l..

p 2T

<
~
S

If mg, < mp, pure low thrust is used when Az < GA is satisfied by
T> 2 {1+ %)2
If m, > mp, that relation is given by

y
T

v
T

Note that mp for =2 (1 + %)2 Pure high thrust is used if u = 0,

and v, = V for which
m_=exp ( -V)

As shown earlier, u = 0 is the only non-negative solution of Az = 6A

for t <2 ifm, <m . Ifu=20,nm

e XMy o = 0. Thus use pure high thrust for

There are five expressions for the payload. Choice of the one to use
is determined by the relative magnitudes of T, mg, and V. These results

are summarized in Chapter 3.
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Appendix D

THE NECESSARY CONDITIONS FOR

TRANSFERS BETWEEN COPLANAR COAXIAL ELLIPSES

Necessary conditions for the maximization of payload on transfers
between coplanar coaxial ellipses are found. Ideal high and low thrust
engines as defined in Chapter 2 are used to provide the propulsion
and the differential equations of motion introduced in Chapter 4
‘define the transfer. Additional notation is introduced in order to
simplify many of the expressions. Using the assumptions of Chapters
2 and 4, the equations of motion can be completely integrated for
high and low thrust phases. Using these results, the payload can be
analytically expressed as a function of the parameters necessary to
define the various phases. It is not possible to analytically deter-
mine the relative amount of high and low thrust used due to the
existence of transcendental functions in the necessary conditions.
This appendix contains the analytics which reduce the dynamic
optimization problem to a set of necessary conditions for the para-

metric maximization of an expression for the payload.

For transfers betweeh coplanar coaxial ellipses, analytic expres-
sions are known for ideal high and 1low thrust transfers. For the
combination, we wish to determine the payload improvements and the
character of the transfers. Certain assumptions must be made about
the mode shapes of the transfers and then verified by checking other
relations. The derivations of this appendix assume two high thrust
phases separated by a low thrust phase. The first high thrust phase
can have two impulses at opposite apses of a coasting orbit. The
second high thrust phase allows one impulse at the final apse. The
low thrust phase accomplishes the remaining portion of the transfer
between these high thrust phases by the application of a small con-

tinuous control. Pure high thrust transfers occur when the first
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high thrust phase accomplishes the entire transfer. If no high thrust

impulses are used, the result of course is a pure low thrust transfer.

For this assumed mode of transfer, the general optimization prob-
lem can be stated using the results of Chapter 2. After introducing
some necessary notation, the problem is divided into the separate
analysis of the high and low thrust phases. The necessary equations of

each phase are derived prior to their combination as an expression for

the mixed thrust payload and the necessary conditions for its optimality.

These necessary conditions are then related to a set of derivatives
convenient for the numerical maximization of the payload expression.
Expressions for the second derivatives of the payload are also derived
for use in the numerical procedures. Finally a simpler suboptimal

transfer is derived.

D.1 The optimal control problem and some nomenclature

The general optimal control problem of Chapter 2 will be stated
for the specific state differential equations of Chapter 4. Under the
mode shape assumptions of this appendix, the necessary conditions for
this problem will be stated. A simplifying notation is then introduced

for use in later sections of this appendix.

As shown in Chapter 2, for the maximization of the payload

2 2
Jl [(Kl_Ll) + me] if me i mp
m =
ki Jl2K12
PR S if me Zm
1+ — 1L R
m, 1

where

p=
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governed by the differential equations

. x(0) = X

x = g(x,t)(All + AlZ + A2 + AS) - -

- - - - - - x(ty) = X
x(tg) = X¢

J= - 32 TIAl JC0) = 1

k= - 3z KUA |+ 1A, K(0) = 1

3 o Kz 2 +

L=%1-4 L(0) = 0

the Hamiltonian

T, 1,2 T, | T, T,
Ho=p'Ay - g8 * By Ay SqlApq ey A28 1A 51+p5 Ag-85]A]

is maximized by the optimal controls

i
O

“B1 ‘P.l‘ =

1
A1
0 lpyl < 8
*P, lp,| = 84
A2
0 lpy] < 8
“R3 lpsl = 84
A =
0 iP_3‘ < 8g
A, = Q(t)p(t)

where

p(t) = BT (x,1)2(t)
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T 2.0 1 N if mg = ™
“ 1 I 7 (KyLg)
QUE) = —7——~
oK (t) o +L12
m_ ifm2m

+ A+ A +As)

with the boundary conditions on ) free, but implicitly specified by
the other necessary conditions. The subscripts on p indicate the evalu-

ation of p at the apse and time appropriate for each of the impulses.

The thresholds & are given by

2 2 R
J1 (Kl—Ll) if m, < mp
1
6 =
1 c mn
_———1——11———2- ifm >nm
1+ = L e- P
m 1
e
_ 1
63 = ¢ ™y

To verify the validity of the timing assumptions for the impulses, the
primer, p, at the other initial and final apses must be smaller in

magnitude than the primer at the apses of the impulses. The optimality

of the assumed mode requires
[p(t)] < 8;(1)

during the entire low thrust phase. Otherwise, a small intermediate
impulse would locally increase the payload. This appendix derives
explicit expressions for the various parameters stated here in the pay-

load and necessary conditions.
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Before the problem of mixed thrust transfers is solved, some
notation needs to be established. There are three dimensionless

constants which are used

- N = g2 . . .
B ZZZ;— dimensionless gravitational constant (D.1)
i
te
T = = dimensionless time of flight (D.2)
ac
3
p = roula dimensionless change in semi-major axis (D.3)
£

where
n = the gravitational constant for the basic orbital (D.4)

differential equation

R=--Y_1Rr
- RIET

¢ = exhaust velocity of the high thrust engine

o = the reciprocal specific power of the low thrust power

supply

a.= the semi-major axis on the same orbit as indicated by
0, {The subscript will be explained later)
Note that the same definition of t was used for field free space trans-
fers. The constants 80, P, 60, ef, and 1 completely specify the orbital

transfers being considered here.
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Transfers are discussed in terms of the change in semi-major axis,

a, and a variable & which is related to eccentricity by

cos zei = e;

This was chosen because the terms <JIte are frequently encountered.

Note that
cos © 417—
. _ T-e
sin 8 = —-2-—

In discussing the transfers we are interested in similar equations for

the primer at the opposite apses of an ellipse. Choosing

T = - cos f = - cos E

when E = £ = 0 or 7 we have

+1 at apoapse

-1 at periapse

Define two functions of 6 such that

F = "——2——“ G (D.5)
G=T _.2_.—' € (D.6)

From this definition

[t
(%]
~N



dF _

gr = -6 .
and
G
a 2
¢

of course we

There are

These are

R

2
v

The differen

defined 68's.

also have the identity

two parameters of interest at an apse, the radius and velocity.

given by

a(1+T e)

-k -Te)

t phases of the transfer can be identified by appropriately

Let

be on the initial orbit before any thrusting
be on a coasting orbit after the first impulse

be at the beginning of the low thrust phase

D.7
(after the second impulse) ( )

be at the end of the low thrust phase

(before the final impulse)

be on the final orbit after all thrusting is completed
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The intermediate semi-major axes are all related to these 8's,

In order to simplify notation only two T's will be used to define

the apses. Let

when the first impulse is at periapse

apoapse and T, = -1 if the opposite.

_ 2 _ 2
R1 = ZaOGO = ZalG1

_ 2 _ 2
R2 = ZalF1 = Zaze

Thus we have
G, \°
al = ao C—]—-'
2
2 0 F2 G1

(D.8)

and the second impulse is at

Then let
“10%0

Ty 7
T “Toeq
oV 7
T l-TOe2
oY 72—



From this relation we get

o =g, 12
2 = Bo F T,

At the final time, let

Tf = +1 (D.9)
if the final impulse is at apoapse, and Tf = -1 if at periapse. Thus
1+T e -Tce
= £3 _ £3
Fg = \/“_z 3 7 TeN\T
_ 1+Tfef G - 1—Tfef
£ p) £ £ 2

and the radius at the final impulse is

- 2 _ 2
R3 = ZafFf = 2a3F3
Thus
£ o
2
3 ;7 F3

Two parameters are useful in the description of the low thrust

phase. Let

Y = J% (65 - 6,) (D.10)

155




and

by definition. From the previous relations we have

(F3G0F1>
£271 (D.11)

Using these definitions, the parameters which are used in the

necessary conditions can be derived in a more concise notation.

D.2 The low thrust phase

During the low thrust phase of a mixed mode transfer, the high

thrust is zero (511 = 512

simplify. By the assumption of Chapter 4, there is only a small change

= Az = 0) and certain aspects of the equations

in the orbital parameters during any one orbit. The periodic and
secular variations in the orbital parameters can be separated by
averaging the equations of motion to eliminate the periodic terms. Then
the differential equations for the secular variation in parameters can
be completely integrated and the free boundary conditions on the costate
A completely determined. Finally the analytic expressions for the pay-
load, and time history of the primer and state are given to complete

the solution for the low thrust phase.

The Hamiltonian can be explicitly given using the expression

for B(x,t) in equation 4.2.



H =3 Qp(t)p(t) = 7 qA"B BTx

1 0,2

2 ~1u 2 5 3 2

I-e cos E [4(Ala) *ghytghrycos 2E

1 3 2 . 3.2
Ts cos E + cos E(4(A1a) e 4k1aA231n 29 T kz e)]

The complete dynamics of the low thrust phase are given by the Hamil-
tonian since the state and costate can be obtained by the canonical

differential equations

[
]
(o KB
>
>
i
1
|

The periodic terms in H (and implicitly in the other equations) can be

eliminated by taking the time average of H over any orbital period.

ot

H =

E+2m
1 7?5 H(l-e cos E)dE

E

2]

-7 . [40qa) + 52,
Since time does not appear as an explicit variable, the averaged
Hamiltonian, Hl’ is a constant. The state and/costate variables in Hl
must now be regarded as averaged variables, since the information about
their periodic variation has been lost. The differential equations for
the averaged state and costate are still related to Hy by the differen-

tial equations given above.
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Carrying out the indicated partial differentiation, we get the set

of differential equations.

a _ 5 Q
IT =T M2?
ax 4Q
1_ 1 1 2
dt a Hl " (Ala)
ary .
dt

with the boundary conditions

a(0) a, a(tf) =

I
j+]
w

i
@

|
<D

8(0) o(t

g -

by the earlier definition of the subscripts.

The following steps are used to analytically integrate these

equations. Of course we have

Ao = A (D.12)

The differential equations for Al and a can be combined to give

d(r;2) da
3t T ? 3
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which can be integrated easily

10%2 1 (D.13)

Now a can be determined from

1 da: -d (l)=_4Q1)\ a)
7 T It \a TR
to give
L by BN b JVE
a(t) u 1072 u 1
For 6 we have
de _ > gl A,na
dt 8 U 20
.S_Sl_)\ a
_8 2092
4Q 2Qa
1 2 2 2
Lo o2 t Hit
Thus
-2XA,a -2 A;na8
6 - 8, = JE tan 1 1 - tan ! 10 2
2 8 o -
A 2
Vg' 20 g "20

From basic trigonometry we get

. g . _ T QlaZ a(t
51nAJ§»(6—62) = Jg'xzo o a3, t
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The initial conditions on A can be determined from the terminal

conditions on x. These are

=1 v -
Aloaz = 7 6]-_—5»—2—{; (1 Y COS \U) (D.14)
I3 i .
)\20': J—S— 'Q—]'.‘é-—z't—;:: (Y S1in w) (D.ls)
The other solution
=1 _u
AlOaZ =3 Qlaztf (1+y cos y)

was discarded as it does not maximize the payload m . Thus for the

Hamiltonian we have

H. = 1 uh
1 7 2
Qpa,te

with

h=1- 2y cos y + yz

Similarly the boundary conditions on A can be substituted into the time

history of x. The low thrust acceleration is given by

The low thrust cost le is an integral of 522 over the entire
transfer. Over an integral number of orbits, H and Hy have identical

integrals. Thus
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L2(t)

i

S~

%‘ Kz(t)glz(t) dt

t

i}

2
QK “Hy

o< VB 4

The only time varying portion of the threshold Gl(t) is Lz(t). For
this problem Gl(t) is a linearly increasing function of time. The rate
of increase is related to the amount of low thrust used during the
transfer, If there is no low thrust, L(t) = 0 and the threshold wilil

be constant.

In the notation of this appendix, the primer at an apse is given by

P
bt |7
- 0
with
- a G(8) ]
p =Ty 20 §5 e,

)(ZBZMW '(ucow-hqj COWNN N,

At the start of the low thrust phase

]
s
2
|_a
—3

G
P2 © Quac T [”‘Y cos ¥) g ¢ \/% y sin ‘P]
At the end of the low thrust phase

T 28 G
Qfo&c —-—T-g- [(cos Yo~ oy) ?3—+ J%— sin 1};]

Pz =
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Thus the low thrust phase is completely defined by

. 8 . (t)y t
sin J; (e - 62) = Yy sin ¥ .ngi— f;

%2 =1 - 2(1-y c )t+h(t)2
20 Tees W) v nG

2_—.
1t

Ly = K8y {7

This section of the appendix has derived expressions for the

o+

Li(t) = L

change in orbital elements during the low thrust phase of a transfer.
Expressions for these maxima of the primer (at the apses) during the
transfer have been derived. Further a simple expression has resulted
for the time varying portion of the threshold. The fuel cost of the
low thrust phase (le) is also given. Thus the total dynamics have
been explicitly solved and parameters of interest identified. It is
now possible to match this one low thrust phase with initial and

terminal high thrust phases.

D.3 The high thrust phases

As shown in the previous section, the primer has a maximum magni-
tude at an apse and at that maximum the primer has only a tangential
component. Thus any high thrust impulses will be tangential at an apse.

Based upon that knowledge, an expression will be derived for the

cost of such impulses. Then the conditions on the primer at an impulse
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will be given in terms of the expression for the primer at the boun-

daries of the low thrust phase.

An optimal impulse at an apse imparts a change in the velocity in
the tangential direction. Since the orbital velocity an an apse is
also tangential, this represents a change in the scalar magnitude of
velocity. It is assumed that the direction of rotation on the orbit

is never reversed by an impulse. The velocity at an apse is given by

o

where

=]

VI-T e

R = a(l+T e)

As shown in Chapter 2, the payload for a high thrust impulse is

determined by
- 1
K, = exp [- i |av]]

1

The radius at the first impulse is

and the change in velocity is

I 3Ty
AV, = ‘/R—l— (F;-Fy)
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The radius at the second impulse is

. 2
R2 = ZaZF2

and the change in velocity is

o>
<
i

Zu
2= Ty \IR'Z‘ (6,64

!

2
To ¥, (G, - 6))

The radius at the third (and final) impulse is

and the change in velocity is
= H .
AVy = Tf<J%; (G¢ - Gg)

AV, Bz
I IE S (Gg - Gy)

Fipally define three more signums Sl’ SZ’ 83 such that
Sy = -Tosignum (AVl)
, = Tgsignum (AV,)

(D.16)
83 = Tfsignum (AVS)
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To complete the solution
(2e2) - avs (522
Kl = exp [ - abs = /" abs 75‘)]
8o B2
= oxp [ - Sy (FroFg) - S, g (6,°6p)]
and
AV,
J1 = exp [ - abs (75_)]

= exp [ - 83 ;% (Gf'Gs)]

The definition of the S functions also implies that

Sl(el-eo) >0
Sz(ez—el) >0
sscef-es) >0

The high thrust phase is thus completely defined by the payload
functions Ky and J, and the variables 6 which describe the transfer.
In order to determine the relative amounts of high and low thrust
(choice of 6's) the appropriate necessary conditions are required. As
shown in Chapter 2, the primer must be matched with the thresholds 64
or 63 at the time of each impulse. Since two initial impulses are
allowed, the level of the primer at the first apse is required in terms

of the primer at the time of the second impulse.
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Both the primer and its derivative must be continuous across an
impulse. From the previous section, at the beginning of the low thrust

phase, the primer is given by

Py = T (Czir“* Dz)'

where

28
1 2
2 7 qac & (7Y cos ¥)

(@]
]

T

28
.1 2 :
P2 7 " qpac T(@Ysm“’)

and the derivative of the primer is related to
These values for the primer are fixed by the low thrust phase. 1In

terms of these definitions of C and D we also have

1
we get

C, and D; must be chosen to satisfy these relations. Having done so

i
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and

) 146, 2
py' = - Py * v Py’
1 Fp "2 7 FTyG6; 2
Similarly we get
= -+l yp, + 2 '
Py G2 31 R 151
0 00

Also it follows easily that

+

- 2 -
P, =T (cz T, " D2)

At the final time

where
28
1 2
37 Qe T (cos ¥ - ¥)

@]
i

D3=-Gi—ae- E?(J%sinﬂ;)

Similar to the preceding we get

- FS
Py = Tg(Cyg o D3)

- . 1 1
R A e
f f £f
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These conditions during the high thrust phase can now be matched with
the parameters from the low thrust phase to completely define the

necessary conditions for the mixed mode transfer.

D.4 The mixed thrust necessary conditions

The previous sections have derived ekpressions for the cost func-
tions and the nature of the primer for each phase of an optimal trajec-
tory. Upon definition of the thresholds, the mixed thrust necessary
conditions can be summarized. This section uses the nomenclature and

definitions of the previous sections.

The initial threshold

2 2
J1 (Kl-Ll) m, < mp
1
61(0) =z .
"—__TE—__T me 2 mp
1 + =1 -
me 1

rflrf
=l
I A
=

o
r+‘r+
Hh
E]
[o]
v
=]

and

There will be an impulse at the first apse if the primer at that

time is equal to the initial threshold. Thus either

lpy | = 6,(0)
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or there is no first impulse, which is indicated by

For this to be optimal we must also have

lpy | < 8,(0)

Similarly at the second apse either

9,5 8
lp,| = 8,(0) or
lpzl < 61(0)
At the final time either
b5 = 8¢
[p3' =84 or
lp3l < 63

These three conditions completely define the necessary conditions for
transfers which maximize the payload under the assumptions of this
chapter. To verify that no other impulses should be used, the primer
at all other times must be less than the threshold appropriate to that

time. Thus if
+
[pyl < 8;(0) lp," | < 8,(0)

Ipgl < &5 Ips | < 684

and

[p(t)] < 8;(t)
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the assumptions on the timing of the impulses are valid.

D.5 The first derivative of the payload

The equations in the previous section are useful for the analysis
of the problem, but in their present form, they are not convenient for
a numerical iteration. The first derivative vector of the payload
with respect to the 6's will be determined here and related to the
necessary conditions of the previous section. These equations will
then be used to obtain the second derivative matrix for later use in

the numerical iterations.

Expressing the payload as

m

2, 2 2 e
Jl Kl (1‘)() + ;(—2- me i mp
1
m =
T
3%k, ?
m_ >nm
2 e — p
ST
1+ o X
e
where
_ b
X = x
1

i am_ s L 3K, ! 3J, _ax
&7 358 A K] 38 BJ, 38 ~ 38 (D.17)
where
6, g1
8 =40, g =148, (D.18)
b3 g3
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(1-x) m, < mp
. X 2, 2
B = EGI = ZJl K1 )
K1 X
7 2 m, 2 m
K" 2 cT P
me(l + i X )
e
(1-x) m, < mp
6A = (D.lg)
My
— m_ >m
K, x €—- P
Mo
5B= 6A+——'2———' (D.ZO)
S

In a numerical optimization of payload all first derivatives will be
driven to zero, or the appropriate 6 specified, and no longer free to

be chosen.

It is easy to relate g, to the necessary condition
0 = 8,(0) - [p,l

By algebra we have the relationships

. X
§y = acQ, Sa

- . To X  3x
P2 §; Qlac 562
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and

1 1
- =-SB
Kl 562 272
and finally
Bmﬂ ‘
82 7 35, T " S2P2 181 SoToPe

Optimally the impulse is applied in 'the direction of the primer and

since S, T0 is the signum of the second AV, it is also the signum of
Py- Thus the first derivative here is simply related to the earlier
necessary condition by a non-zero coefficient. The derivative with
respect to 63 is similarly related to its necessary condition. How-
ever, more algebra is required to relate the derivative with respect
to 61 to its necessary condition. Those steps will not be carried

out here.

For completeness, all of the derivatives required for all first

derivatives of the payload are expressed below.
gy = BIOA(KY)y - xq]
gy = BS,(XKp); - %]
gz = Bl83(Jy)5 - x4]

where the other derivatives are given below.

(K,), = & R L [(1 + (1-S,8,)F,%)G,-G,]
171 KI 5@; FlchZ 12771 1 72
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-

1 -
K1)y = g, 307 = - 528,
1 992
1 3y
(J1)3 = 3. 50, = SzBz = SzB,v
1 993
oKy A a3y .
56, ~ 38, 39,
B
_9x _ "2 2 (1 - y cos ¥)
X1 "% TFGco VT

x2=g—§ =-Bz J%; [(l-ycosw);%—y Jgsinw]

Xz = WS = 'BZY\/%‘—I [(cos vo-y) %—J% sin'w]

D.6 The second derivative matrix

The matrix of second derivatives of the payload with respect to
the 6's is given in this section. The terms were obtained by a
straightforward differentiation of the first derivatives, and are
presented here for completeness. These terms are used in the Newton-
Raphson step in the numerical iteration which is described in the next
appendix. For a solution which satisfies the necessary conditions, a
negative definite second derivative matrix is a sufficient condition

for the solution to be at least locally maximum.
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The second derivative matrix is

36,06

with the individual terms given by

174

38,796,

,2 2
50,2 a6
32 52
36,30, "

(D.21)



Some of these terms have two expressions depending upon the relative

sizes of m,

d .
an mp

(o3 S >
@ o>
Ll P

agl _ 3g3
3 1
38

8g2 ~ Bgs
365 39,

26,
B[Bzg, + 30, (K1),
3g3
30,

BGB

3
B[Bygz + 39, (J))5 + 83 30, (31)5 - *33l

For m_ < m_ we have

e P

(oM
@ o
GR
1
1
el
(58]

%)
(=]
-

)|
@
[
i
1
»
[

- X3l
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1 3B 1 °A [ x \ X2
B, = - A(K,), + (1 3 ) 2 ]
2 BZ 562 Fx+3A 172 EA X
§, - 3x x
1 3B _ 1 A 3
By =738, B [z(Jl)s M < f‘]

2oy =2 (12
361 171 3 EL:]

L RPN W ) + 1+ (1-S,S,)E, 2
F,G; | 7z (61762 1°29%1

3K
3 _ 3 (1 1
5= K1)z = 79 <K“ 5% )

9K
° 1 1
36, K1)y = 357 (’K‘ Eé“)
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[
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9

2322
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TXF, Gy 1

9X
38,

2
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*23 7 306,
2, r g . S G (8, %283\ _ *o%3
"“Tx—“wism‘” F—"F—) BERSSATRE TR 5 ]“;r‘
2 3 2"3
x =?——X—_§
33 © 30,
2 2
28,7y G G X
_ P2 Y13 ) 3 3 . X3
= —x [E— cosy -y + ?g (Y ?g + 2y siny )] <

D.7 A simpler transfer

In the process of investigating transfers between coplanar
coaxial elliptic orbits, with two initial impulses, it was observed
that the optimal transfer often approached a simpler transfer. This
other transfer was investigated and found to be near optimal for many
cases. It also provides a good initial condition for the numerical
optimization of the complete problem. It is presented here, along

with the necessary and sufficient conditions for its optimality

This near optimal transfer uses two impulses to go from the
initial orbit to an intermediate orbit with an eccentricity equal to
the final eccentricity. Then the low thrust phase spirals to the
final orbit at constant eccentricity. No final impulses are allowed.
The only free parameter is the semimajor axis of the intermediate
orbit. In terms of the 6's which define the complete problem, we

are assuming
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Thus ¢ = 0. Instead of 61, a,/ag is more convenient to use as the

free parameter.

For these special assumptions, let

be the independent variable in the algorithm. The low thrust cost is

L
e Z (1
X’KI’Syso\E'(}_r p)

with

Sy = signum (Rf - Ro)

and all other variables defined as before. For the high thrust, the

cost is

and from before

S TBO

K, = exp { - —— [V1+Te - (T s, +ﬂt<\/ﬁ*—- VTT“")]

having substituted e, = eg and explicitly expressed the F and G

functions. With
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and n defined by

1 -T e0
nCTETe,
we get
S B
K, = exp _‘/_L%T——‘— Yo/ 77— - JI*T &
-1 e Yy +n
0
1| - ——— —
+ = nafl-T e, - n
y(\/\l £ ‘/——Zrﬁy)
Note that

Similar to the previous two sections, the derivatives which are

necessary for determining y are

- D s, k), - 2

g = 5y A Y1’y By

and
32m"=B[a6A(K)+63(K)-32x+1?-§g]
ay? 3y 1’y A 3y “M1ly ayz E? 3y

where B and 6A are as before and the derivatives are
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y
o’x _ .2 ax
" y 39y

™ol A

=1 1 _ 1 2 +1
l)y*m—‘syg(" ) e () (*-‘7—)}

. ( 2 ) n+1 [(5+2n2)yz +n2]}

n+>’2 4Y(n+)’2)
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Appendix E

THE NUMERICAL PROCEDURES USED

As described in Chapter 5, a sequence of changes in 8, called
66, is desired which will increase the payload and lead to a final
value of 8 such that m is (locally) maximized. The four steps which
are used for the maximization of m - are the gradient, Newton-Raphson,
parabolic, and acceleration steps. The description of how and when

to use these respective steps is in Chapter 5.

E.1 The gradient and Newton-Raphson steps.

Expressions are derived in Appendix D for the payload and its
first two derivatives as functions of the free parameters 8. These
derivatives can be used effectively in a numerical iteration toward
the choice of § which maximizes m . The gradient step uses only
first derivative information, while the Newton-Raphson (N-R) step
uses both first and second derivative information. These two steps
evolve naturally from the Taylor series expansion for m_ about the

present value for 6.

= T 1 T
m (0+68) = m (8) + g 60 + 7 667G 86 +
where
mﬂ(g) = the value of the payload for the current value
of 0.
om
g = §5£ = the vector of first derivatives of the payload

with respect to the 8's evaluated at 6. (g is

often called the gradient vector)
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g:G:

T
3g
T 55 ° the matrix of second derivatives of the payload

with respect to the 8's evaluated at 0.

Analytic expressions for n., g and G are given in Appendix D. This
series converges for small enough 88 if all derivatives are bounded.

It is assumed that those conditions apply.

The gradient step

The payload can always be increased by a (small enough) step in

the gradient direction

88 =k g
where k is chosen so that the step is small enough. From experience
in the numerical iteration to the solution for this problem, it was

observed that

k=.1

works successfully most of the time. When a smaller step size is
required, the '"parabolic step'" described in the next section is used
to decrease the step size. The gradient step works well when 'far"
from the solution. It provides an improvement in the payload, but

has poor convergence properties when close to the solution.

The Newton-Raphson step:

If 68 is small enough so that all derivatives higher than second
order can be ignored, the choice of 86 which maximizes the payload is

found when the first derivative vector with respect to 68 is zero

184



and the second derivative matrix

is negative definite. This optimum step is classically called the

Newton-Raphson step and is given by

If G is negative definite, g—l exists. As the optimum solution is
approached, g (and 88) will become smaller. The validity of the as-
sumption on the size of 68 is thus best near the maximum. If far
enough from the maximum, this 66 may be too large to ignore the higher
order derivatives. A parabolic step size control is used if the re-

sult of the step is not acceptable. When

g=0

and G is negative definite, no (small) step, 68, can increase the
payload. For the existence of a local maximum, it is necessary that
g = 0 and G be negative semi-definite (G < 0), and it is sufficient

if G is negative definite (G <0).

E.2 Parabolic step size control

Whenever a gradient or N-R step is not acceptable (see Chapter 5),
step size control is exercised. This method uses the value of m, and
its gradient at the reference point and the value of m_ which resulted
from the unacceptable step. The magnitude of another step, from the
same reference point and in the same vector direction as the previous

step is determined. If the step
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60 = d

was unacceptable (produced a smaller payload), a better size step in
the same direction is desired. Expressing the Taylor series expansion

for the payload with the choice of the step
69 = k d

we get

1.2.T

T
m (k) =m (6) + k gd+>kdGd~+ ...

As before, this expression is maximized by

gd
k=‘—'-Tr——-

if
aTe a < o

We know m“(l) = m(® + d) since that value was the payload which re-

sulted from the unacceptable step 668 = d. Using this we get

de a = -2[g"d - (m (6+d) - m_(9))]

Thus we have

gTé

£d - (n (8+d) - m_(0))
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If a gradient step was used, this step provides information about the
second derivative in the direction of the gradient only. If a N-R
step was used, this step includes the information about the higher
order derivatives which were ignored. If a parabolic step is still
too large, the procedure is repeated and a better esiimate of the

desired quantities is obtained.

No step size control is used to increase the size of a step.
Thus bounds must be placed upon k to prevent cutting the step size
too much. On the other hand, we wish to insure that the step size is

indeed reduced. Thus k is constrained by

If the optimum k is outside these bounds, it is assumed that the
original step was beyond the bounds of a reasonable quadratic approxi-

mation, and the arbitrary intermediate choice

is used.

E.3 The acceleration step

Numerical difficulties are encountered for some of the cases
considered. The gradient steps do not make any progress and the
second derivative matrix is not negative definite so that a N-R step
can not be used. For these cases, the '"acceleration step" described
below can be used effectively. The problem arises when the payload has
a small increase in one vector direction and a sharp drop in other
directions. Such characteristics are often described as a ravine in
in a minimization problem, or a ridge in a maximization problem such as

this. The magnitude of the gradient on the top of the ridge is usually

187




quite small. Two problems are involved in the treatment of this
difficulty. First, there must be a means of identifying such a region,

and second, a vector in the direction of the ridge must be defined.

In the vicinity of a ridge, the gradient vector points to the
top of the ridge instead of along it. Typical behavior is a zig-zag
pattern as successive gradient steps go from one side of the ridge to
the other. Little progress is made in the direction of the ridge. A
single parabolic step size control will usually successfully define the
top of the ridge. Thus the vector between the result of two successful
parabolic steps can be used to define the direction of the ridge.

Numerically, & is defined as being on top of a ridge if

i) it was the result of a single parabolic step size
control on a gradient step
ii) g < .03

iii) G is not negative definite

Although not true for all problems with ridges, G was not negative
definite near a ridge and the test on G is used to prevent taking an
unnecessary acceleration step. A6 is the vector between two points
on the top of the ridge which are separated by at least one inter-

mediate iteration step. Once a Af is defined, an acceleration step
86 = 1.4 AD

is used. 1If such a step improves the payload, the next step is in

the same direction only larger

86

849 = 1.4 88;
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The step size is thus increased and steps taken along the ridge as
long as there is an improvement in the payload. For this problem,
the ridge in m.oas a function of 6 is a straight line (what luck!)
and large changes in § often result from this procedure once the

ridge is identified. As many as 12 successful steps, each with a

larger step size, have been observed in iterations.

The numerical definition of A and the identification of a ridge
are best understood through use of an illustrative iteration. Figure
E.1 shows a sequence of steps which lead to the definition of the
ridge. The top of the ridge is indicated by a dashed line. For this
discussion, the subscript on § indicates the result of a successful
iteration step. 8, is the initial value. The first trial gradient
step was not successful. Parabolic step sizing resulted in 91' The
next gradient step is successful. 23 results from step size control
on an unsuccessful gradient step. The vector A8 = 93 - 91’ which
joins the result of these two successful parabolic steps, defines the
approximate direction of the ridge. The steps to 8, and 8; are suc-
cessful since they increase the payload even though they are off of
the ridge. Note the gradient at 8z 24, and 95' The acceleration
step usually increases the payload even though A8 is not aligned with
g. From this it is easy to see that successive gradient steps, even
with parabolic step size control, will not work well in the vicinity

of a ridge.
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Figure E.1 Representation of the acceleration step
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